These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 313981

  • 1. Chemical change and energy production during contraction of frog muscle: how are their time courses related?
    Curtin NA, Woledge RC.
    J Physiol; 1979 Mar; 288():353-66. PubMed ID: 313981
    [Abstract] [Full Text] [Related]

  • 2. A comparison of the energy balance in two successive isometric tetani of frog muscle.
    Curtin NA, Woledge RC.
    J Physiol; 1977 Sep; 270(2):455-71. PubMed ID: 302857
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Energy balance in DNFB-treated and untreated frog muscle.
    Curtin NA, Woledge RC.
    J Physiol; 1975 Apr; 246(3):737-52. PubMed ID: 1079537
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The effect of the performance of work on total energy output and metabolism during muscular contraction.
    Curtin NA, Gilbert C, Kretzschmar KM, Wilkie DR.
    J Physiol; 1974 May; 238(3):455-72. PubMed ID: 4546948
    [Abstract] [Full Text] [Related]

  • 12. Energy balance in frog sartorius muscle during an isometric tetanus at 20 degrees C.
    Canfield P, Lebacq J, MARECHAL G.
    J Physiol; 1973 Aug; 232(3):467-83. PubMed ID: 4759678
    [Abstract] [Full Text] [Related]

  • 13. Comparison of physical and biochemical energy balances: chemical breakdown, heat production, and oxygen consumption in frog sartorius muscle.
    Paul RJ.
    Fed Proc; 1982 Feb; 41(2):169-73. PubMed ID: 7060741
    [Abstract] [Full Text] [Related]

  • 14. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E, Sjöholm H, Sahlin K, Edström L.
    Ciba Found Symp; 1981 Feb; 82():19-40. PubMed ID: 6271506
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. [Relationship between the strength of myocardial fiber contraction of frog heart ventricle and processes of intracellular energy transport].
    Rozenshtraukh LV, Saks VA, Undrovinas AI, Iushmanova AV, Smirnov VN.
    Fiziol Zh SSSR Im I M Sechenova; 1976 Aug; 62(8):1199-1209. PubMed ID: 1086803
    [Abstract] [Full Text] [Related]

  • 18. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions.
    Gorselink M, Drost MR, van der Vusse GJ.
    Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654
    [Abstract] [Full Text] [Related]

  • 19. Chemical change and energy output during muscular contraction.
    Gilbert C, Kretzschmar KM, Wilkie DR, Woledge RC.
    J Physiol; 1971 Oct; 218(1):163-93. PubMed ID: 5130607
    [Abstract] [Full Text] [Related]

  • 20. Repriming and reversal of the isometric unexplained enthalpy in frog skeletal muscle.
    Homsher E, Lacktis J, Yamada T, Zohman G.
    J Physiol; 1987 Dec; 393():157-70. PubMed ID: 3502266
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.