These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 31412583
1. Clostridium botulinum and Clostridium perfringens Occurrence in Kazakh Honey Samples. Maikanov B, Mustafina R, Auteleyeva L, Wiśniewski J, Anusz K, Grenda T, Kwiatek K, Goldsztejn M, Grabczak M. Toxins (Basel); 2019 Aug 13; 11(8):. PubMed ID: 31412583 [Abstract] [Full Text] [Related]
2. Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria. Chukwu EE, Nwaokorie FO, Coker AO, Avila-Campos MJ, Solis RL, Llanco LA, Ogunsola FT. Anaerobe; 2016 Dec 13; 42():176-181. PubMed ID: 27789246 [Abstract] [Full Text] [Related]
3. Differentiation of Clostridium perfringens and Clostridium botulinum from non-toxigenic clostridia, isolated from prepared and frozen foods by PCR-DAN based methods. Córdoba MG, Aranda E, Medina LM, Jordano R, Córdoba JJ. Nahrung; 2001 Apr 13; 45(2):125-8. PubMed ID: 11379285 [Abstract] [Full Text] [Related]
4. Clostridium botulinum spores in Polish honey samples. Grenda T, Grabczak M, Sieradzki Z, Kwiatek K, Pohorecka K, Skubida M, Bober A. J Vet Sci; 2018 Sep 30; 19(5):635-642. PubMed ID: 29929360 [Abstract] [Full Text] [Related]
5. Detection of C. botulinum types in honey by mPCR. Gücükoğlu A, Terzi G, Çadirci Ö, Alişarli M, Kevenk O, Uyanik T. J Food Sci; 2014 Apr 30; 79(4):M600-3. PubMed ID: 24621137 [Abstract] [Full Text] [Related]
6. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction. Nevas M, Hielm S, Lindström M, Horn H, Koivulehto K, Korkeala H. Int J Food Microbiol; 2002 Jan 30; 72(1-2):45-52. PubMed ID: 11843412 [Abstract] [Full Text] [Related]
7. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay. Williamson CHD, Vazquez AJ, Hill K, Smith TJ, Nottingham R, Stone NE, Sobek CJ, Cocking JH, Fernández RA, Caballero PA, Leiser OP, Keim P, Sahl JW. Appl Environ Microbiol; 2017 Sep 15; 83(18):. PubMed ID: 28733282 [Abstract] [Full Text] [Related]
8. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Popoff MR, Bouvet P. Toxicon; 2013 Dec 01; 75():63-89. PubMed ID: 23707611 [Abstract] [Full Text] [Related]
9. [Bacteriologic analysis and detection of Clostridium botulinum spores in honey]. De Centorbi OP, Alcaraz LE, Centorbi HJ. Rev Argent Microbiol; 1994 Dec 01; 26(2):96-100. PubMed ID: 7938507 [Abstract] [Full Text] [Related]
10. Inhibition of Clostridium botulinum by strains of Clostridium perfringens isolated from soil. Smith LD. Appl Microbiol; 1975 Aug 01; 30(2):319-23. PubMed ID: 169734 [Abstract] [Full Text] [Related]
11. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food. Wang RF, Cao WW, Franklin W, Campbell W, Cerniglia CE. Mol Cell Probes; 1994 Apr 01; 8(2):131-7. PubMed ID: 7935511 [Abstract] [Full Text] [Related]
12. An innovative molecular detection tool for tracking and tracing Clostridium botulinum types A, B, E, F and other botulinum neurotoxin producing Clostridia based on the GeneDisc cycler. Fach P, Fenicia L, Knutsson R, Wielinga PR, Anniballi F, Delibato E, Auricchio B, Woudstra C, Agren J, Segerman B, de Medici D, van Rotterdam BJ. Int J Food Microbiol; 2011 Mar 01; 145 Suppl 1():S145-51. PubMed ID: 20471128 [Abstract] [Full Text] [Related]
14. Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. Fach P, Micheau P, Mazuet C, Perelle S, Popoff M. J Appl Microbiol; 2009 Aug 01; 107(2):465-73. PubMed ID: 19291235 [Abstract] [Full Text] [Related]
15. Multiplex PCR for the detection of Clostridium botulinum & C. perfringens toxin genes. Joshy L, Chaudhry R, Chandel DS. Indian J Med Res; 2008 Aug 01; 128(2):206-8. PubMed ID: 19001686 [No Abstract] [Full Text] [Related]
16. Molecular gene profiling of Clostridium botulinum group III and its detection in naturally contaminated samples originating from various European countries. Woudstra C, Le Maréchal C, Souillard R, Bayon-Auboyer MH, Anniballi F, Auricchio B, De Medici D, Bano L, Koene M, Sansonetti MH, Desoutter D, Hansbauer EM, Dorner MB, Dorner BG, Fach P. Appl Environ Microbiol; 2015 Apr 01; 81(7):2495-505. PubMed ID: 25636839 [Abstract] [Full Text] [Related]
17. Contamination routes of Clostridium botulinum in the honey production environment. Nevas M, Lindström M, Hörman A, Keto-Timonen R, Korkeala H. Environ Microbiol; 2006 Jun 01; 8(6):1085-94. PubMed ID: 16689729 [Abstract] [Full Text] [Related]
18. Detection and toxin typing of Clostridium perfringens in formalin-fixed, paraffin-embedded tissue samples by PCR. Wu J, Zhang W, Xie B, Wu M, Tong X, Kalpoe J, Zhang D. J Clin Microbiol; 2009 Mar 01; 47(3):807-10. PubMed ID: 19109478 [Abstract] [Full Text] [Related]
19. Conjugative transfer of the Escherichia coli-Clostridium perfringens shuttle vector pJIR1457 to Clostridium botulinum type A strains. Bradshaw M, Goodnough MC, Johnson EA. Plasmid; 1998 Nov 01; 40(3):233-7. PubMed ID: 9806860 [Abstract] [Full Text] [Related]
20. Clostridium Perfringens Spores in Polish Honey Samples. Grenda T, Grabczak M, Goldsztejn M, Kozieł N, Kwiatek K, Pohorecka K, Skubida M, Bober A. J Vet Res; 2018 Sep 01; 62(3):281-284. PubMed ID: 30584605 [Abstract] [Full Text] [Related] Page: [Next] [New Search]