These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 31414100

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant.
    Wei Y, Zhou D, Mackie A, Yang S, Dai L, Zhang L, Mao L, Gao Y.
    J Agric Food Chem; 2021 Feb 10; 69(5):1619-1636. PubMed ID: 33512160
    [Abstract] [Full Text] [Related]

  • 4. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces.
    Sarkar A, Zhang S, Murray B, Russell JA, Boxal S.
    Colloids Surf B Biointerfaces; 2017 Oct 01; 158():137-146. PubMed ID: 28688363
    [Abstract] [Full Text] [Related]

  • 5. Physicochemical behaviour of WPI-stabilized emulsions in in vitro gastric and intestinal conditions.
    Li J, Ye A, Lee SJ, Singh H.
    Colloids Surf B Biointerfaces; 2013 Nov 01; 111():80-7. PubMed ID: 23792544
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer-particle-surfactant interfaces.
    Wei Y, Zhou D, Yang S, Dai L, Zhang L, Mao L, Gao Y, Mackie A.
    Food Funct; 2021 Apr 07; 12(7):3246-3265. PubMed ID: 33877248
    [Abstract] [Full Text] [Related]

  • 8. Designing Gastric-Stable Adsorption Layers by Whey Protein-Pectin Complexation at the Oil-Water Interface.
    Li H, Van der Meeren P.
    J Agric Food Chem; 2023 May 10; 71(18):7109-7118. PubMed ID: 37126566
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus.
    Macierzanka A, Böttger F, Rigby NM, Lille M, Poutanen K, Mills EN, Mackie AR.
    Langmuir; 2012 Dec 18; 28(50):17349-62. PubMed ID: 23171215
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics.
    Sarkar A, Zhang S, Holmes M, Ettelaie R.
    Adv Colloid Interface Sci; 2019 Jan 18; 263():195-211. PubMed ID: 30580767
    [Abstract] [Full Text] [Related]

  • 14. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models.
    Malaki Nik A, Wright AJ, Corredig M.
    Colloids Surf B Biointerfaces; 2011 Apr 01; 83(2):321-30. PubMed ID: 21194901
    [Abstract] [Full Text] [Related]

  • 15. Encapsulation of Vitamin D3 in Pickering Emulsion Stabilized by Nanofibrillated Mangosteen Cellulose: Effect of Environmental Stresses.
    Mitbumrung W, Suphantharika M, McClements DJ, Winuprasith T.
    J Food Sci; 2019 Nov 01; 84(11):3213-3221. PubMed ID: 31589344
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.