These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 31421146

  • 1. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW, Lee YG, Kim SJ, Jin YS, Seo JH.
    J Biotechnol; 2019 Oct 10; 304():31-37. PubMed ID: 31421146
    [Abstract] [Full Text] [Related]

  • 2. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae.
    Kim JW, Seo SO, Zhang GC, Jin YS, Seo JH.
    Bioresour Technol; 2015 Sep 10; 191():512-9. PubMed ID: 25769689
    [Abstract] [Full Text] [Related]

  • 3. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S, Hahn JS.
    Metab Eng; 2015 Sep 10; 31():94-101. PubMed ID: 26226562
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J.
    Yeast; 2000 Mar 30; 16(5):463-74. PubMed ID: 10705374
    [Abstract] [Full Text] [Related]

  • 7. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim SJ, Sim HJ, Kim JW, Lee YG, Park YC, Seo JH.
    Bioresour Technol; 2017 Dec 30; 245(Pt B):1551-1557. PubMed ID: 28651874
    [Abstract] [Full Text] [Related]

  • 8. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC, Turner TL, Jin YS.
    J Ind Microbiol Biotechnol; 2017 Mar 30; 44(3):387-395. PubMed ID: 28070721
    [Abstract] [Full Text] [Related]

  • 9. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.
    Kim SJ, Seo SO, Park YC, Jin YS, Seo JH.
    J Biotechnol; 2014 Dec 20; 192 Pt B():376-82. PubMed ID: 24480571
    [Abstract] [Full Text] [Related]

  • 10. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.
    Hou J, Suo F, Wang C, Li X, Shen Y, Bao X.
    BMC Biotechnol; 2014 Feb 14; 14():13. PubMed ID: 24529074
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Using regulatory information to manipulate glycerol metabolism in Saccharomyces cerevisiae.
    Hou J, Vemuri GN.
    Appl Microbiol Biotechnol; 2010 Jan 14; 85(4):1123-30. PubMed ID: 19727706
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S.
    Appl Environ Microbiol; 2009 May 14; 75(10):3196-205. PubMed ID: 19329666
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Development of an industrial yeast strain for efficient production of 2,3-butanediol.
    Huo G, Foulquié-Moreno MR, Thevelein JM.
    Microb Cell Fact; 2022 Sep 29; 21(1):199. PubMed ID: 36175998
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.