These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
348 related items for PubMed ID: 31422532
21. Magnesium-deficiency-induced alterations of gas exchange, major metabolites and key enzymes differ among roots, and lower and upper leaves of Citrus sinensis seedlings. Li CP, Qi YP, Zhang J, Yang LT, Wang DH, Ye X, Lai NW, Tan LL, Lin D, Chen LS. Tree Physiol; 2017 Nov 01; 37(11):1564-1581. PubMed ID: 28633366 [Abstract] [Full Text] [Related]
22. Adaptive Responses of Citrusgrandis Leaves to Copper Toxicity Revealed by RNA-Seq and Physiology. Wu F, Huang H, Peng M, Lai Y, Ren Q, Zhang J, Huang Z, Yang L, Rensing C, Chen L. Int J Mol Sci; 2021 Nov 06; 22(21):. PubMed ID: 34769452 [Abstract] [Full Text] [Related]
23. The aluminum distribution and translocation in two citrus species differing in aluminum tolerance. Zhang H, Li XY, Lin ML, Hu PP, Lai NW, Huang ZR, Chen LS. BMC Plant Biol; 2022 Mar 02; 22(1):93. PubMed ID: 35232395 [Abstract] [Full Text] [Related]
24. Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings. Huang WT, Zheng ZC, Hua D, Chen XF, Zhang J, Chen HH, Ye X, Guo JX, Yang LT, Chen LS. BMC Plant Biol; 2022 Jul 26; 22(1):370. PubMed ID: 35879653 [Abstract] [Full Text] [Related]
25. Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance. Guo P, Qi YP, Huang WL, Yang LT, Huang ZR, Lai NW, Chen LS. Ecotoxicol Environ Saf; 2018 Aug 30; 158():213-222. PubMed ID: 29704792 [Abstract] [Full Text] [Related]
26. Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability. Hippler FWR, Boaretto RM, Dovis VL, Quaggio JA, Azevedo RA, Mattos-Jr D. Sci Rep; 2018 Jan 26; 8(1):1641. PubMed ID: 29374264 [Abstract] [Full Text] [Related]
27. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings. Lu YB, Yang LT, Li Y, Xu J, Liao TT, Chen YB, Chen LS. Tree Physiol; 2014 Jun 26; 34(6):608-18. PubMed ID: 24957048 [Abstract] [Full Text] [Related]
28. Response of three citrus genotypes used as rootstocks grown under boron excess conditions. Simón-Grao S, Nieves M, Martínez-Nicolás JJ, Cámara-Zapata JM, Alfosea-Simón M, García-Sánchez F. Ecotoxicol Environ Saf; 2018 Sep 15; 159():10-19. PubMed ID: 29730402 [Abstract] [Full Text] [Related]
29. Magnesium-Deficiency Effects on Pigments, Photosynthesis and Photosynthetic Electron Transport of Leaves, and Nutrients of Leaf Blades and Veins in Citrus sinensis Seedlings. Ye X, Chen XF, Deng CL, Yang LT, Lai NW, Guo JX, Chen LS. Plants (Basel); 2019 Sep 30; 8(10):. PubMed ID: 31575029 [Abstract] [Full Text] [Related]
30. Sulfur-Mediated-Alleviation of Aluminum-Toxicity in Citrus grandis Seedlings. Guo P, Li Q, Qi YP, Yang LT, Ye X, Chen HH, Chen LS. Int J Mol Sci; 2017 Dec 03; 18(12):. PubMed ID: 29207499 [Abstract] [Full Text] [Related]
32. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY. J Plant Physiol; 2008 Sep 08; 165(13):1331-41. PubMed ID: 18191499 [Abstract] [Full Text] [Related]
33. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics. Sang W, Huang ZR, Qi YP, Yang LT, Guo P, Chen LS. J Proteomics; 2015 Jun 18; 123():128-46. PubMed ID: 25892131 [Abstract] [Full Text] [Related]
34. Mechanisms of aluminum-tolerance in two species of citrus: secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Yang LT, Jiang HX, Tang N, Chen LS. Plant Sci; 2011 Mar 18; 180(3):521-30. PubMed ID: 21421400 [Abstract] [Full Text] [Related]
35. [Effects of drought and rewatering on leaf photosynthesis, chlorophyll fluorescence, and root architecture of citrus seedlings.]. Wei QJ, Feng FF, Ma ZZ, Su ST, Ning SJ, Gu QQ. Ying Yong Sheng Tai Xue Bao; 2018 Aug 18; 29(8):2485-2492. PubMed ID: 30182586 [Abstract] [Full Text] [Related]
36. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots. Hippler FWR, Petená G, Boaretto RM, Quaggio JA, Azevedo RA, Mattos-Jr D. Environ Sci Pollut Res Int; 2018 May 18; 25(13):13134-13146. PubMed ID: 29488204 [Abstract] [Full Text] [Related]
37. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJIP chlorophyll a fluorescence analysis. Xia J, Tian Q. J Environ Sci (China); 2009 May 18; 21(11):1569-74. PubMed ID: 20108692 [Abstract] [Full Text] [Related]
38. Responses of reactive oxygen species and methylglyoxal metabolisms to magnesium-deficiency differ greatly among the roots, upper and lower leaves of Citrus sinensis. Cai YT, Zhang H, Qi YP, Ye X, Huang ZR, Guo JX, Chen LS, Yang LT. BMC Plant Biol; 2019 Feb 15; 19(1):76. PubMed ID: 30770733 [Abstract] [Full Text] [Related]
39. Growth and photosynthetic responses to copper in wild grapevine. Cambrollé J, García JL, Ocete R, Figueroa ME, Cantos M. Chemosphere; 2013 Sep 15; 93(2):294-301. PubMed ID: 23746388 [Abstract] [Full Text] [Related]
40. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Pätsikkä E, Kairavuo M, Sersen F, Aro EM, Tyystjärvi E. Plant Physiol; 2002 Jul 15; 129(3):1359-67. PubMed ID: 12114589 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]