These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


384 related items for PubMed ID: 31423617

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. In vivo CRISPR-Cas9 expression in Candida glabrata, Candida bracarensis, and Candida nivariensis: A versatile tool to study chromosomal break repair.
    Métivier K, Zhou-Li Y, Fairhead C.
    Yeast; 2024 Sep; 41(9):560-567. PubMed ID: 39126214
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
    Cen Y, Timmermans B, Souffriau B, Thevelein JM, Van Dijck P.
    Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858
    [Abstract] [Full Text] [Related]

  • 7. CRISPR-mediated Genome Editing of the Human Fungal Pathogen Candida albicans.
    Evans BA, Pickerill ES, Vyas VK, Bernstein DA.
    J Vis Exp; 2018 Nov 14; (141):. PubMed ID: 30507925
    [Abstract] [Full Text] [Related]

  • 8. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing.
    Tatiossian KJ, Clark RDE, Huang C, Thornton ME, Grubbs BH, Cannon PM.
    Mol Ther; 2021 Mar 03; 29(3):1057-1069. PubMed ID: 33160457
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C, Greene EC.
    Trends Genet; 2021 Jul 03; 37(7):639-656. PubMed ID: 33896583
    [Abstract] [Full Text] [Related]

  • 13. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y, Liu G, Chen X, Liu M, Zhan C, Liu X, Bai Z.
    Enzyme Microb Technol; 2020 Aug 03; 138():109556. PubMed ID: 32527526
    [Abstract] [Full Text] [Related]

  • 14. Precision genome editing in the CRISPR era.
    Salsman J, Dellaire G.
    Biochem Cell Biol; 2017 Apr 03; 95(2):187-201. PubMed ID: 28177771
    [Abstract] [Full Text] [Related]

  • 15. A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata.
    Maroc L, Zhou-Li Y, Boisnard S, Fairhead C.
    PLoS Genet; 2020 Oct 03; 16(10):e1008627. PubMed ID: 33057400
    [Abstract] [Full Text] [Related]

  • 16. Precision Genome Editing with CRISPR-Cas9.
    Rahman S, Ikram AR, Azeem F, Tahir Ul Qamar M, Shaheen T, Mehboob-Ur-Rahman.
    Methods Mol Biol; 2024 Oct 03; 2788():355-372. PubMed ID: 38656525
    [Abstract] [Full Text] [Related]

  • 17. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair.
    Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J, Jinek M, Schwank G.
    Elife; 2018 May 29; 7():. PubMed ID: 29809142
    [Abstract] [Full Text] [Related]

  • 18. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J, Li J, Liu Y, Wu Q.
    Mol Cell; 2018 Aug 16; 71(4):498-509.e4. PubMed ID: 30033371
    [Abstract] [Full Text] [Related]

  • 19. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S, Del Bene F, Revenu C.
    Methods; 2017 May 15; 121-122():77-85. PubMed ID: 28300641
    [Abstract] [Full Text] [Related]

  • 20. Genome Editing Using CRISPR/Cas9 System in the Rice Blast Fungus.
    Arazoe T.
    Methods Mol Biol; 2021 May 15; 2356():149-160. PubMed ID: 34236684
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.