These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


179 related items for PubMed ID: 31434012

  • 1. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms.
    Liu C, Min Y, Zhang AY, Si Y, Chen JJ, Yu HQ.
    Water Res; 2019 Nov 15; 165():114980. PubMed ID: 31434012
    [Abstract] [Full Text] [Related]

  • 2. Photochemical Anti-Fouling Approach for Electrochemical Pollutant Degradation on Facet-Tailored TiO2 Single Crystals.
    Liu C, Zhang AY, Si Y, Pei DN, Yu HQ.
    Environ Sci Technol; 2017 Oct 03; 51(19):11326-11335. PubMed ID: 28891634
    [Abstract] [Full Text] [Related]

  • 3. Characterization and electrochemical properties of TiO2-rNTs/SnO2-Sb/PbO2 electrodes for the mineralization of persistent organic pollutants using anodic oxidation coupled Electro-Fenton treatment: Effect of precursor selection.
    Rai D, Sinha S.
    Chemosphere; 2024 Mar 03; 352():141307. PubMed ID: 38307338
    [Abstract] [Full Text] [Related]

  • 4. Fabrication of a permeable SnO2-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater.
    Yang C, Fan Y, Shang S, Li P, Li XY.
    Environ Int; 2021 Dec 03; 157():106827. PubMed ID: 34418849
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode.
    Zhu X, Shi S, Wei J, Lv F, Zhao H, Kong J, He Q, Ni J.
    Environ Sci Technol; 2007 Sep 15; 41(18):6541-6. PubMed ID: 17948806
    [Abstract] [Full Text] [Related]

  • 6. Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy {001} facets.
    Zhang AY, Long LL, Liu C, Li WW, Yu HQ.
    Water Res; 2014 Dec 01; 66():273-282. PubMed ID: 25222331
    [Abstract] [Full Text] [Related]

  • 7. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols.
    Gan L, Wu Y, Song H, Lu C, Zhang S, Li A.
    Chemosphere; 2019 Jul 01; 226():329-339. PubMed ID: 30939372
    [Abstract] [Full Text] [Related]

  • 8. Enhancing electrochemical degradation of phenol at optimum pH condition with a Pt/Ti anode electrode.
    Zambrano J, Park H, Min B.
    Environ Technol; 2020 Oct 01; 41(24):3248-3259. PubMed ID: 31390950
    [Abstract] [Full Text] [Related]

  • 9. Photochemical Protection of Reactive Sites on Defective TiO2- x Surface for Electrochemical Water Treatment.
    Liu C, Zhang AY, Si Y, Pei DN, Yu HQ.
    Environ Sci Technol; 2019 Jul 02; 53(13):7641-7652. PubMed ID: 31150211
    [Abstract] [Full Text] [Related]

  • 10. A promising electrode material modified by Nb-doped TiO2 nanotubes for electrochemical degradation of AR 73.
    Xu L, Liang G, Yin M.
    Chemosphere; 2017 Apr 02; 173():425-434. PubMed ID: 28129621
    [Abstract] [Full Text] [Related]

  • 11. Electrochemical oxidation of carbamazepine in water using enhanced blue TiO2 nanotube arrays anode on porous titanium substrate.
    Huang W, Huang Y, Tang B, Fu Y, Guo C, Zhang J.
    Chemosphere; 2023 May 02; 322():138193. PubMed ID: 36812998
    [Abstract] [Full Text] [Related]

  • 12. Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system.
    Saratale RG, Noh HS, Song JY, Kim DS.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 May 02; 49(13):1542-52. PubMed ID: 25137542
    [Abstract] [Full Text] [Related]

  • 13. Mineralization of organic pollutants by anodic oxidation using reactive electrochemical membrane synthesized from carbothermal reduction of TiO2.
    Trellu C, Coetsier C, Rouch JC, Esmilaire R, Rivallin M, Cretin M, Causserand C.
    Water Res; 2018 Mar 15; 131():310-319. PubMed ID: 29306202
    [Abstract] [Full Text] [Related]

  • 14. Electrocatalytic oxidation of phenol from wastewater using Ti/SnO2-Sb2O4 electrode: chemical reaction pathway study.
    Loloi M, Rezaee A, Aliofkhazraei M, Rouhaghdam AS.
    Environ Sci Pollut Res Int; 2016 Oct 15; 23(19):19735-43. PubMed ID: 27406226
    [Abstract] [Full Text] [Related]

  • 15. Photo-assisted electrochemical detection of bisphenol A in water samples by renewable {001}-exposed TiO2 single crystals.
    Si Y, Zhang AY, Liu C, Pei DN, Yu HQ.
    Water Res; 2019 Jun 15; 157():30-39. PubMed ID: 30952006
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater: Role of operative parameters and mechanistic study.
    Turan A, Keyikoglu R, Kobya M, Khataee A.
    Chemosphere; 2020 Sep 15; 255():127014. PubMed ID: 32679632
    [Abstract] [Full Text] [Related]

  • 18. Reactive species conversion into 1O2 promotes substantial inhibition of chlorinated byproduct formation during electrooxidation of phenols in Cl--laden wastewater.
    Zheng W, Chen Y, Fu H, Yan Z, Lei Z, Duan W, Feng C.
    Water Res; 2022 Oct 15; 225():119143. PubMed ID: 36182674
    [Abstract] [Full Text] [Related]

  • 19. Preparation and characterization of a novel blue-TiO2/PbO2-carbon nanotube electrode and its application for degradation of phenol.
    Xu Y, Feng R, Zhang M, Yan C, Liu J, Zhang T, Wang X.
    J Environ Sci (China); 2023 Apr 15; 126():590-601. PubMed ID: 36503785
    [Abstract] [Full Text] [Related]

  • 20. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode.
    Chen Y, Li H, Liu W, Tu Y, Zhang Y, Han W, Wang L.
    Chemosphere; 2014 Oct 15; 113():48-55. PubMed ID: 25065789
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.