These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 31438836
1. Recent Patents on Impact of Lipopeptide on the Biofilm Formation onto Titanium and Stainless Steel Surfaces. Pires MEE, Parreira AG, Silva TNL, Colares HC, da Silva JA, de Magalhães JT, Galdino AS, Gonçalves DB, Granjeiro JM, Granjeiro PA. Recent Pat Biotechnol; 2020; 14(1):49-62. PubMed ID: 31438836 [Abstract] [Full Text] [Related]
2. Production and characterization of the lipopeptide with anti-adhesion for oral biofilm on the surface of titanium for dental implants. Carvalho FS, Tarabal VS, Livio DF, Cruz LF, Monteiro APF, Parreira AG, Guimarães PPG, Scheuerman K, Chagas RCR, da Silva JA, Gonçalves DB, Granjeiro JM, Sinisterra RD, Segura MEC, Granjeiro PA. Arch Microbiol; 2024 Jul 17; 206(8):354. PubMed ID: 39017726 [Abstract] [Full Text] [Related]
3. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study. Pilz M, Staats K, Tobudic S, Assadian O, Presterl E, Windhager R, Holinka J. Clin Orthop Relat Res; 2019 Feb 17; 477(2):461-466. PubMed ID: 30418277 [Abstract] [Full Text] [Related]
4. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, Lu Z. Appl Microbiol Biotechnol; 2019 Jun 17; 103(11):4565-4574. PubMed ID: 31011774 [Abstract] [Full Text] [Related]
5. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. Schildhauer TA, Robie B, Muhr G, Köller M. J Orthop Trauma; 2006 Jul 17; 20(7):476-84. PubMed ID: 16891939 [Abstract] [Full Text] [Related]
6. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces. Deng Q, Pu Y, Sun L, Wang Y, Liu Y, Wang R, Liao J, Xu D, Liu Y, Ye R, Fang Z, Gooneratne R. Food Res Int; 2017 Dec 17; 102():8-13. PubMed ID: 29196015 [Abstract] [Full Text] [Related]
7. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials. Adachi K, Tsurumoto T, Yonekura A, Nishimura S, Kajiyama S, Hirakata Y, Shindo H. J Orthop Sci; 2007 Mar 17; 12(2):178-84. PubMed ID: 17393274 [Abstract] [Full Text] [Related]
8. The impact of thermal cycling on Staphylococcus aureus biofilm growth on stainless steel and titanium orthopaedic plates. Akens MK, Chien C, Katchky RN, Kreder HJ, Finkelstein J, Whyne CM. BMC Musculoskelet Disord; 2018 Jul 27; 19(1):260. PubMed ID: 30049271 [Abstract] [Full Text] [Related]
9. Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity and adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Shakerifard P, Gancel F, Jacques P, Faille C. Biofouling; 2009 Jul 27; 25(6):533-41. PubMed ID: 19431000 [Abstract] [Full Text] [Related]
10. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L. Antonie Van Leeuwenhoek; 2016 Oct 27; 109(10):1375-88. PubMed ID: 27444239 [Abstract] [Full Text] [Related]
11. Galleria mellonella as an alternative in vivo model to study bacterial biofilms on stainless steel and titanium implants. Mannala GK, Rupp M, Alagboso F, Kerschbaum M, Pfeifer C, Sommer U, Kampschulte M, Domann E, Alt V. ALTEX; 2021 Oct 27; 38(2):245-252. PubMed ID: 33086380 [Abstract] [Full Text] [Related]
12. Nafion coated stainless steel for anti-biofilm application. Zhong LJ, Pang LQ, Che LM, Wu XE, Chen XD. Colloids Surf B Biointerfaces; 2013 Nov 01; 111():252-6. PubMed ID: 23831592 [Abstract] [Full Text] [Related]
13. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Bae YM, Baek SY, Lee SY. Int J Food Microbiol; 2012 Feb 15; 153(3):465-73. PubMed ID: 22225983 [Abstract] [Full Text] [Related]
14. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG. Appl Microbiol Biotechnol; 2009 Jun 15; 83(3):541-53. PubMed ID: 19343338 [Abstract] [Full Text] [Related]
15. Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli. Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. J Microbiol Biotechnol; 2019 Aug 28; 29(8):1177-1183. PubMed ID: 31370119 [Abstract] [Full Text] [Related]
17. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Moraes JO, Cruz EA, Souza EGF, Oliveira TCM, Alvarenga VO, Peña WEL, Sant'Ana AS, Magnani M. Int J Food Microbiol; 2018 Sep 20; 281():90-100. PubMed ID: 29843904 [Abstract] [Full Text] [Related]
18. Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate. Wei J, Cao X, Qian J, Liu Z, Wang X, Su Q, Wang Y, Xie R, Li X. Medicine (Baltimore); 2021 Nov 05; 100(44):e27426. PubMed ID: 34871207 [Abstract] [Full Text] [Related]
19. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Moryl M, Spętana M, Dziubek K, Paraszkiewicz K, Różalska S, Płaza GA, Różalski A. Acta Biochim Pol; 2015 Nov 05; 62(4):725-32. PubMed ID: 26505130 [Abstract] [Full Text] [Related]
20. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Zhao Q, Liu Y, Wang C, Wang S, Peng N, Jeynes C. Med Eng Phys; 2008 Apr 05; 30(3):341-9. PubMed ID: 17544806 [Abstract] [Full Text] [Related] Page: [Next] [New Search]