These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
124 related items for PubMed ID: 31441256
1. [Construction and analysis of muscle functional network for exoskeleton robot]. Chen L, Zhang C, Song X, Zhang T, Liu X, Yang Z. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug 25; 36(4):565-572. PubMed ID: 31441256 [Abstract] [Full Text] [Related]
2. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability. Liu C, Liang H, Ueda N, Li P, Fujimoto Y, Zhu C. Sensors (Basel); 2020 Nov 09; 20(21):. PubMed ID: 33182271 [Abstract] [Full Text] [Related]
4. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton. Guo Z, Wang C, Song C. PLoS One; 2020 Nov 09; 15(8):e0238247. PubMed ID: 32853239 [Abstract] [Full Text] [Related]
5. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton. Shi K, Huang R, Mu F, Peng Z, Yin J, Cheng H. Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov 09; 2021():1076-1081. PubMed ID: 34891474 [Abstract] [Full Text] [Related]
6. Selection of EMG Sensors Based on Motion Coordinated Analysis. Chen L, Liu X, Xuan B, Zhang J, Liu Z, Zhang Y. Sensors (Basel); 2021 Feb 06; 21(4):. PubMed ID: 33562131 [Abstract] [Full Text] [Related]
8. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W, Fong J, Crocher V, Lee PVS, Oetomo D, Tan Y, Ackland DC. J Biomech; 2018 Apr 27; 72():7-16. PubMed ID: 29506759 [Abstract] [Full Text] [Related]
10. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks. Trigili E, Grazi L, Crea S, Accogli A, Carpaneto J, Micera S, Vitiello N, Panarese A. J Neuroeng Rehabil; 2019 Mar 29; 16(1):45. PubMed ID: 30922326 [Abstract] [Full Text] [Related]
12. Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation. Wang J, Liu J, Zhang G, Guo S. ISA Trans; 2022 Apr 29; 123():87-97. PubMed ID: 34217496 [Abstract] [Full Text] [Related]
13. Design and analysis of a lower limb assistive exoskeleton robot. Li X, Wang KY, Yang ZY. Technol Health Care; 2024 Apr 29; 32(S1):79-93. PubMed ID: 38759039 [Abstract] [Full Text] [Related]
14. Influence of an upper limb exoskeleton on muscle activity during various construction and manufacturing tasks. Musso M, Oliveira AS, Bai S. Appl Ergon; 2024 Jan 29; 114():104158. PubMed ID: 37890312 [Abstract] [Full Text] [Related]
15. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q, Fei C, Jiao Z, Xie Q, Dai Y, Fan Y, Shen Z, Yu H. Technol Health Care; 2022 Jan 29; 30(5):1167-1182. PubMed ID: 35342067 [Abstract] [Full Text] [Related]
17. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D, Song R, Gao J. IEEE Trans Neural Syst Rehabil Eng; 2017 Aug 29; 25(8):1125-1134. PubMed ID: 27337719 [Abstract] [Full Text] [Related]
18. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Kiguchi K, Imada Y, Liyanage M. Annu Int Conf IEEE Eng Med Biol Soc; 2007 Aug 29; 2007():3040-3. PubMed ID: 18002635 [Abstract] [Full Text] [Related]
20. Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks. Blanco A, Catalán JM, Díez JA, García JV, Lobato E, García-Aracil N. Sensors (Basel); 2019 Aug 02; 19(15):. PubMed ID: 31382363 [Abstract] [Full Text] [Related] Page: [Next] [New Search]