These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 31441256

  • 21. Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements.
    Irastorza-Landa N, Sarasola-Sanz A, Lopez-Larraz E, Bibian C, Shiman P, Birbaumer N, Ramos-Murguialday A.
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():128-133. PubMed ID: 28813806
    [Abstract] [Full Text] [Related]

  • 22. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W, Ding J, Wang Y, Liu Y, Zhang J, Liu J.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb 25; 39(1):75-83. PubMed ID: 35231968
    [Abstract] [Full Text] [Related]

  • 23. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M, Mañanas MA, Alonso JF.
    J Neuroeng Rehabil; 2012 Dec 10; 9():85. PubMed ID: 23216679
    [Abstract] [Full Text] [Related]

  • 24. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C, Fernández-García M, Pinto-Fernández D, Sanz-Morere C, Barroso FO, Borromeo S, Rodríguez-Sánchez C, Moreno JC, Del-Ama AJ.
    Sensors (Basel); 2023 Jan 10; 23(2):. PubMed ID: 36679587
    [Abstract] [Full Text] [Related]

  • 25. Myoelectric analysis of upper-extremity muscles during robot-assisted bilateral wrist flexion-extension in subjects with poststroke hemiplegia.
    Chan HL, Hung JW, Chang KC, Wu CY.
    Clin Biomech (Bristol); 2021 Jul 10; 87():105412. PubMed ID: 34167043
    [Abstract] [Full Text] [Related]

  • 26. Ergonomic Assessment of a Lower-Limb Exoskeleton through Electromyography and Anybody Modeling System.
    Kong YK, Choi KH, Cho MU, Kim SY, Kim MJ, Shim JW, Park SS, Kim KR, Seo MT, Chae HS, Shim HH.
    Int J Environ Res Public Health; 2022 Jul 01; 19(13):. PubMed ID: 35805747
    [Abstract] [Full Text] [Related]

  • 27. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E, Coscia M, Marcheschi S, Roas G, Salsedo F, Frisoli A, Bergamasco M, Micera S.
    J Neuroeng Rehabil; 2016 Jan 23; 13():9. PubMed ID: 26801620
    [Abstract] [Full Text] [Related]

  • 28. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D, Moreno Y, Siqueira A.
    Sensors (Basel); 2024 Apr 21; 24(8):. PubMed ID: 38676262
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X, Zheng L.
    IISE Trans Occup Ergon Hum Factors; 2021 Apr 21; 9(3-4):167-185. PubMed ID: 34254566
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Physiological consequences of using an upper limb exoskeleton during manual handling tasks.
    Theurel J, Desbrosses K, Roux T, Savescu A.
    Appl Ergon; 2018 Feb 21; 67():211-217. PubMed ID: 29122192
    [Abstract] [Full Text] [Related]

  • 35. Active Neural Network Control for a Wearable Upper Limb Rehabilitation Exoskeleton Robot Driven by Pneumatic Artificial Muscles.
    Zhang H, Fan J, Qin Y, Tian M, Han J.
    IEEE Trans Neural Syst Rehabil Eng; 2024 Feb 21; 32():2589-2597. PubMed ID: 39012735
    [Abstract] [Full Text] [Related]

  • 36. Effect of Robotic Exoskeleton Motion Constraints on Upper Limb Muscle Synergies: A Case Study.
    Mcdonald CG, Fregly BJ, O'Malley MK.
    IEEE Trans Neural Syst Rehabil Eng; 2021 Feb 21; 29():2086-2095. PubMed ID: 34618674
    [Abstract] [Full Text] [Related]

  • 37. Review of electromyography onset detection methods for real-time control of robotic exoskeletons.
    Carvalho CR, Fernández JM, Del-Ama AJ, Oliveira Barroso F, Moreno JC.
    J Neuroeng Rehabil; 2023 Oct 24; 20(1):141. PubMed ID: 37872633
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T, Islam MR, Brahmi B, Rahman MH.
    Sensors (Basel); 2022 May 14; 22(10):. PubMed ID: 35632155
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.