These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 31444795
1. PsbS-dependent and -independent mechanisms regulate carotenoid-chlorophyll energy coupling in grana thylakoids. Gacek DA, Holleboom CP, Tietz S, Kirchhoff H, Walla PJ. FEBS Lett; 2019 Nov; 593(22):3190-3197. PubMed ID: 31444795 [Abstract] [Full Text] [Related]
2. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P. Nat Plants; 2016 Feb 01; 2():15225. PubMed ID: 27249196 [Abstract] [Full Text] [Related]
3. The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. Kereïche S, Kiss AZ, Kouril R, Boekema EJ, Horton P. FEBS Lett; 2010 Feb 19; 584(4):759-64. PubMed ID: 20035752 [Abstract] [Full Text] [Related]
4. Carotenoid-chlorophyll coupling and fluorescence quenching correlate with protein packing density in grana-thylakoids. Holleboom CP, Yoo S, Liao PN, Compton I, Haase W, Kirchhoff H, Walla PJ. J Phys Chem B; 2013 Sep 26; 117(38):11022-30. PubMed ID: 23402591 [Abstract] [Full Text] [Related]
5. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP, Ruban AV. Plant J; 2010 Jan 26; 61(2):283-9. PubMed ID: 19843315 [Abstract] [Full Text] [Related]
6. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR. Photosynth Res; 2020 May 26; 144(2):195-208. PubMed ID: 32266611 [Abstract] [Full Text] [Related]
7. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW. Plant J; 2012 Jan 26; 69(2):289-301. PubMed ID: 21919982 [Abstract] [Full Text] [Related]
8. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification. Kalituho L, Grasses T, Graf M, Rech J, Jahns P. Planta; 2006 Feb 26; 223(3):532-41. PubMed ID: 16136330 [Abstract] [Full Text] [Related]
9. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV. Nat Plants; 2017 Jan 30; 3():16225. PubMed ID: 28134919 [Abstract] [Full Text] [Related]
10. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ. Proc Natl Acad Sci U S A; 2009 Jul 28; 106(30):12311-6. PubMed ID: 19617542 [Abstract] [Full Text] [Related]
11. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Wilk L, Grunwald M, Liao PN, Walla PJ, Kühlbrandt W. Proc Natl Acad Sci U S A; 2013 Apr 02; 110(14):5452-6. PubMed ID: 23509270 [Abstract] [Full Text] [Related]
12. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. Ware MA, Giovagnetti V, Belgio E, Ruban AV. J Photochem Photobiol B; 2015 Nov 02; 152(Pt B):301-7. PubMed ID: 26233261 [Abstract] [Full Text] [Related]
13. In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S. Gerotto C, Franchin C, Arrigoni G, Morosinotto T. Plant Physiol; 2015 Aug 02; 168(4):1747-61. PubMed ID: 26069151 [Abstract] [Full Text] [Related]
14. The PsbS protein plays important roles in photosystem II supercomplex remodeling under elevated light conditions. Dong L, Tu W, Liu K, Sun R, Liu C, Wang K, Yang C. J Plant Physiol; 2015 Jan 01; 172():33-41. PubMed ID: 25047739 [Abstract] [Full Text] [Related]
15. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana. Leuenberger M, Morris JM, Chan AM, Leonelli L, Niyogi KK, Fleming GR. Proc Natl Acad Sci U S A; 2017 Aug 15; 114(33):E7009-E7017. PubMed ID: 28652334 [Abstract] [Full Text] [Related]
16. Role of Thylakoid Protein Phosphorylation in Energy-Dependent Quenching of Chlorophyll Fluorescence in Rice Plants. Pashayeva A, Wu G, Huseynova I, Lee CH, Zulfugarov IS. Int J Mol Sci; 2021 Jul 26; 22(15):. PubMed ID: 34360743 [Abstract] [Full Text] [Related]
17. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Sylak-Glassman EJ, Malnoë A, De Re E, Brooks MD, Fischer AL, Niyogi KK, Fleming GR. Proc Natl Acad Sci U S A; 2014 Dec 09; 111(49):17498-503. PubMed ID: 25422428 [Abstract] [Full Text] [Related]
18. High Light Acclimation Mechanisms Deficient in a PsbS-Knockout Arabidopsis Mutant. Yang YN, Le TTL, Hwang JH, Zulfugarov IS, Kim EH, Kim HU, Jeon JS, Lee DH, Lee CH. Int J Mol Sci; 2022 Feb 28; 23(5):. PubMed ID: 35269832 [Abstract] [Full Text] [Related]
19. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Roach T, Krieger-Liszkay A. Biochim Biophys Acta; 2012 Dec 28; 1817(12):2158-65. PubMed ID: 23000078 [Abstract] [Full Text] [Related]
20. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis. Ciszak K, Kulasek M, Barczak A, Grzelak J, Maćkowski S, Karpiński S. Plant Signal Behav; 2015 Dec 28; 10(1):e982018. PubMed ID: 25654166 [Abstract] [Full Text] [Related] Page: [Next] [New Search]