These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1022 related items for PubMed ID: 31448890

  • 21. Double-resonant enhancement of third-harmonic generation in graphene nanostructures.
    You JW, You J, Weismann M, Panoiu NC.
    Philos Trans A Math Phys Eng Sci; 2017 Mar 28; 375(2090):. PubMed ID: 28220005
    [Abstract] [Full Text] [Related]

  • 22. Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics.
    Taghinejad M, Taghinejad H, Xu Z, Liu Y, Rodrigues SP, Lee KT, Lian T, Adibi A, Cai W.
    Adv Mater; 2018 Mar 28; 30(9):. PubMed ID: 29333735
    [Abstract] [Full Text] [Related]

  • 23. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R, Bursi L, Cox JD, Cui Y, Krauter CM, Alabastri A, Manjavacas A, Calzolari A, Corni S, Molinari E, Carter EA, García de Abajo FJ, Zhang H, Nordlander P.
    ACS Nano; 2017 Jul 25; 11(7):7321-7335. PubMed ID: 28651057
    [Abstract] [Full Text] [Related]

  • 24. Plasmonics in atomically thin materials.
    García de Abajo FJ, Manjavacas A.
    Faraday Discuss; 2015 Jul 25; 178():87-107. PubMed ID: 25774774
    [Abstract] [Full Text] [Related]

  • 25. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X, Ying Y, Tong L.
    Acc Chem Res; 2014 Feb 18; 47(2):656-66. PubMed ID: 24377258
    [Abstract] [Full Text] [Related]

  • 26. Graphene plasmonics for tunable terahertz metamaterials.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F.
    Nat Nanotechnol; 2011 Sep 04; 6(10):630-4. PubMed ID: 21892164
    [Abstract] [Full Text] [Related]

  • 27. Intensity dependences of the nonlinear optical excitation of plasmons in graphene.
    Constant TJ, Hornett SM, Chang DE, Hendry E.
    Philos Trans A Math Phys Eng Sci; 2017 Mar 28; 375(2090):. PubMed ID: 28219998
    [Abstract] [Full Text] [Related]

  • 28. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S, Manjavacas A, García de Abajo FJ.
    ACS Nano; 2012 Feb 28; 6(2):1766-75. PubMed ID: 22217250
    [Abstract] [Full Text] [Related]

  • 29. Electrical control of optical plasmon resonance with graphene.
    Kim J, Son H, Cho DJ, Geng B, Regan W, Shi S, Kim K, Zettl A, Shen YR, Wang F.
    Nano Lett; 2012 Nov 14; 12(11):5598-602. PubMed ID: 23025816
    [Abstract] [Full Text] [Related]

  • 30. Nonlinear plasmonic response in atomically thin metal films.
    Rodríguez Echarri Á, Cox JD, Iyikanat F, García de Abajo FJ.
    Nanophotonics; 2021 Nov 14; 10(16):4149-4159. PubMed ID: 36425323
    [Abstract] [Full Text] [Related]

  • 31. Plasmonics in Atomically Thin Crystalline Silver Films.
    Abd El-Fattah ZM, Mkhitaryan V, Brede J, Fernández L, Li C, Guo Q, Ghosh A, Echarri AR, Naveh D, Xia F, Ortega JE, García de Abajo FJ.
    ACS Nano; 2019 Jul 23; 13(7):7771-7779. PubMed ID: 31188552
    [Abstract] [Full Text] [Related]

  • 32. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.
    Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN.
    Nature; 2012 Jul 05; 487(7405):82-5. PubMed ID: 22722866
    [Abstract] [Full Text] [Related]

  • 33. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode.
    Gili VF, Ghirardini L, Rocco D, Marino G, Favero I, Roland I, Pellegrini G, Duò L, Finazzi M, Carletti L, Locatelli A, Lemaître A, Neshev D, De Angelis C, Leo G, Celebrano M.
    Beilstein J Nanotechnol; 2018 Jul 05; 9():2306-2314. PubMed ID: 30202699
    [Abstract] [Full Text] [Related]

  • 34. Single-photon nonlinear optics with graphene plasmons.
    Gullans M, Chang DE, Koppens FH, García de Abajo FJ, Lukin MD.
    Phys Rev Lett; 2013 Dec 13; 111(24):247401. PubMed ID: 24483697
    [Abstract] [Full Text] [Related]

  • 35. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J, Zhu Z, Liu W, Yuan X, Qin S.
    Nanoscale; 2015 Aug 28; 7(32):13530-6. PubMed ID: 26201255
    [Abstract] [Full Text] [Related]

  • 36. Tunable UV-Emitters through Graphene Plasmonics.
    Sloan J, Rivera N, Soljačić M, Kaminer I.
    Nano Lett; 2018 Jan 10; 18(1):308-313. PubMed ID: 29240447
    [Abstract] [Full Text] [Related]

  • 37. Ultrasmall Plasmonic Single Nanoparticle Light Source Driven by a Graphene Tunnel Junction.
    Namgung S, Mohr DA, Yoo D, Bharadwaj P, Koester SJ, Oh SH.
    ACS Nano; 2018 Mar 27; 12(3):2780-2788. PubMed ID: 29498820
    [Abstract] [Full Text] [Related]

  • 38. Low-dimensional gap plasmons for enhanced light-graphene interactions.
    Kim Y, Yu S, Park N.
    Sci Rep; 2017 Feb 27; 7():43333. PubMed ID: 28240230
    [Abstract] [Full Text] [Related]

  • 39. Highly confined low-loss plasmons in graphene-boron nitride heterostructures.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FH.
    Nat Mater; 2015 Apr 27; 14(4):421-5. PubMed ID: 25532073
    [Abstract] [Full Text] [Related]

  • 40. Gated tunability and hybridization of localized plasmons in nanostructured graphene.
    Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ.
    ACS Nano; 2013 Mar 26; 7(3):2388-95. PubMed ID: 23390960
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 52.