These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 31449802
1. Solvation properties of raft-like model membranes. Gironi B, Oliva R, Petraccone L, Paolantoni M, Morresi A, Del Vecchio P, Sassi P. Biochim Biophys Acta Biomembr; 2019 Nov 01; 1861(11):183052. PubMed ID: 31449802 [Abstract] [Full Text] [Related]
2. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R. Biochim Biophys Acta; 2006 Feb 01; 1758(2):248-58. PubMed ID: 16529710 [Abstract] [Full Text] [Related]
3. DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes. Ricci M, Oliva R, Del Vecchio P, Paolantoni M, Morresi A, Sassi P. Biochim Biophys Acta; 2016 Dec 01; 1858(12):3024-3031. PubMed ID: 27664501 [Abstract] [Full Text] [Related]
4. The mechanism of the stabilization of the hexagonal II (HII) phase in phosphatidylethanolamine membranes in the presence of low concentrations of dimethyl sulfoxide. Kinoshita K, Li SJ, Yamazaki M. Eur Biophys J; 2001 Jul 01; 30(3):207-20. PubMed ID: 11508840 [Abstract] [Full Text] [Related]
5. Lipid rafts reconstituted in model membranes. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E. Biophys J; 2001 Mar 01; 80(3):1417-28. PubMed ID: 11222302 [Abstract] [Full Text] [Related]
6. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR. Fritzsching KJ, Kim J, Holland GP. Biochim Biophys Acta; 2013 Aug 01; 1828(8):1889-98. PubMed ID: 23567917 [Abstract] [Full Text] [Related]
7. Influence of Dimethyl Sulfoxide on the Low-Temperature Behavior of Cholesterol-Loaded Palmitoyl-oleyl-phosphatidylcholine Membranes. Gironi B, Paolantoni M, Morresi A, Foggi P, Sassi P. J Phys Chem B; 2018 Jun 21; 122(24):6396-6402. PubMed ID: 29847732 [Abstract] [Full Text] [Related]
8. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Massey JB. Biochim Biophys Acta; 2001 Feb 09; 1510(1-2):167-84. PubMed ID: 11342156 [Abstract] [Full Text] [Related]
9. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study. Periasamy N, Winter R. Biochim Biophys Acta; 2006 Mar 09; 1764(3):398-404. PubMed ID: 16330267 [Abstract] [Full Text] [Related]
10. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG, Lewis RN, McElhaney RN. Chem Phys Lipids; 2015 Oct 09; 191():123-35. PubMed ID: 26368000 [Abstract] [Full Text] [Related]
11. Macroscopic and Nanoscopic Heterogeneous Structures in a Three-Component Lipid Bilayer Mixtures Determined by Atomic Force Microscopy. Khadka NK, Ho CS, Pan J. Langmuir; 2015 Nov 17; 31(45):12417-25. PubMed ID: 26506226 [Abstract] [Full Text] [Related]
12. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG, Mannock DA, Lewis RN, McElhaney RN. Biochemistry; 2011 Nov 22; 50(46):9982-97. PubMed ID: 21951051 [Abstract] [Full Text] [Related]
13. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Sot J, Bagatolli LA, Goñi FM, Alonso A. Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266 [Abstract] [Full Text] [Related]
14. Laurdan emission study of the cholesterol-like effect of long-chain alkylresorcinols on the structure of dipalmitoylphosphocholine and sphingomyelin membranes. Zawilska P, Cieślik-Boczula K. Biophys Chem; 2017 Feb 01; 221():1-9. PubMed ID: 27865129 [Abstract] [Full Text] [Related]
15. Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Bagatolli LA, Gratton E, Fidelio GD. Biophys J; 1998 Jul 01; 75(1):331-41. PubMed ID: 9649390 [Abstract] [Full Text] [Related]
16. Consequences of ions and pH on the supramolecular organization of sphingomyelin and sphingomyelin/cholesterol bilayers. Chemin C, Bourgaux C, Péan JM, Pabst G, Wüthrich P, Couvreur P, Ollivon M. Chem Phys Lipids; 2008 Jun 01; 153(2):119-29. PubMed ID: 18381068 [Abstract] [Full Text] [Related]
17. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG, Mannock DA, Lewis RN, McElhaney RN. Chem Phys Lipids; 2014 Jan 01; 177():71-90. PubMed ID: 24296232 [Abstract] [Full Text] [Related]
18. The new fluorescent membrane probe Ahba: a comparative study with the largely used Laurdan. Vequi-Suplicy CC, Lamy MT, Marquezin CA. J Fluoresc; 2013 May 01; 23(3):479-86. PubMed ID: 23397490 [Abstract] [Full Text] [Related]
19. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Tsamaloukas A, Szadkowska H, Heerklotz H. Biophys J; 2006 Jun 15; 90(12):4479-87. PubMed ID: 16581844 [Abstract] [Full Text] [Related]
20. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra. Yasuda T, Matsumori N, Tsuchikawa H, Lönnfors M, Nyholm TK, Slotte JP, Murata M. Langmuir; 2015 Dec 29; 31(51):13783-92. PubMed ID: 26639840 [Abstract] [Full Text] [Related] Page: [Next] [New Search]