These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 31449877
1. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, Zheng P, Zhang X, Shi J, Xu Z, Gross RA, Koffas MAG. Metab Eng; 2019 Dec; 56():39-49. PubMed ID: 31449877 [Abstract] [Full Text] [Related]
2. Enhanced poly-γ-glutamic acid synthesis in Corynebacterium glutamicum by reconstituting PgsBCA complex and fermentation optimization. Xu G, Wang J, Shen J, Zhu Y, Liu W, Chen Y, Zha J, Zhang X, Zhang X, Shi J, Koffas MAG, Xu Z. Metab Eng; 2024 Jan; 81():238-248. PubMed ID: 38160746 [Abstract] [Full Text] [Related]
3. [γ-Polyglutamic acid production in Corynebacterium glutamicum using sugar by one-step fermentation]. Cheng H, Chen Y, Zhu Y, Cao R, Xu G, Zhang X, Shi J, Xu Z. Sheng Wu Gong Cheng Xue Bao; 2020 Feb 25; 36(2):295-308. PubMed ID: 32148002 [Abstract] [Full Text] [Related]
4. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S. Microb Cell Fact; 2017 May 22; 16(1):88. PubMed ID: 28532451 [Abstract] [Full Text] [Related]
5. Enhancing Poly-γ-glutamic Acid Production in Bacillus tequilensis BL01 through a Multienzyme Assembly Strategy and Expression Features of Glutamate Synthesis from Corynebacterium glutamicum. Wang D, Fu X, Gao J, Zhao X, Bai W. J Agric Food Chem; 2024 Apr 17; 72(15):8674-8683. PubMed ID: 38569079 [Abstract] [Full Text] [Related]
7. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Biotechnol Bioeng; 2018 Oct 17; 115(10):2541-2553. PubMed ID: 29940069 [Abstract] [Full Text] [Related]
8. Metabolic Engineering of Central Carbon Metabolism of Bacillus licheniformis for Enhanced Production of Poly-γ-glutamic Acid. Li B, Cai D, Chen S. Appl Biochem Biotechnol; 2021 Nov 17; 193(11):3540-3552. PubMed ID: 34312784 [Abstract] [Full Text] [Related]
9. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Cao M, Geng W, Zhang W, Sun J, Wang S, Feng J, Zheng P, Jiang A, Song C. Microb Biotechnol; 2013 Nov 17; 6(6):675-84. PubMed ID: 23919316 [Abstract] [Full Text] [Related]
10. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion. Jiang S, Fan L, Zhao M, Qiu Y, Zhao L. Appl Biochem Biotechnol; 2019 Oct 17; 189(2):411-423. PubMed ID: 31037584 [Abstract] [Full Text] [Related]
11. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. Halmschlag B, Putri SP, Fukusaki E, Blank LM. J Biosci Bioeng; 2020 Sep 17; 130(3):272-282. PubMed ID: 32546403 [Abstract] [Full Text] [Related]
12. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production. Tian G, Wang Q, Wei X, Ma X, Chen S. Enzyme Microb Technol; 2017 Apr 17; 99():9-15. PubMed ID: 28193334 [Abstract] [Full Text] [Related]
13. Investigation of Glutamate Dependence Mechanism for Poly-γ-glutamic Acid Production in Bacillus subtilis on the Basis of Transcriptome Analysis. Sha Y, Sun T, Qiu Y, Zhu Y, Zhan Y, Zhang Y, Xu Z, Li S, Feng X, Xu H. J Agric Food Chem; 2019 Jun 05; 67(22):6263-6274. PubMed ID: 31088055 [Abstract] [Full Text] [Related]
14. Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios. Sawada K, Hagihara H, Takimura Y, Kataoka M. Biosci Biotechnol Biochem; 2024 Sep 20; 88(10):1217-1224. PubMed ID: 38955395 [Abstract] [Full Text] [Related]
15. Increasing the bioflocculant production and identifying the effect of overexpressing epsB on the synthesis of polysaccharide and γ-PGA in Bacillus licheniformis. Liu P, Chen Z, Yang L, Li Q, He N. Microb Cell Fact; 2017 Sep 26; 16(1):163. PubMed ID: 28950882 [Abstract] [Full Text] [Related]
16. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Feng J, Gu Y, Quan Y, Cao M, Gao W, Zhang W, Wang S, Yang C, Song C. Metab Eng; 2015 Nov 26; 32():106-115. PubMed ID: 26410449 [Abstract] [Full Text] [Related]
17. Production of ultra-high-molecular-weight poly-γ-glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses. Zeng W, Liu Y, Shu L, Guo Y, Wang L, Liang Z. Biotechnol J; 2024 Apr 26; 19(4):e2300614. PubMed ID: 38581093 [Abstract] [Full Text] [Related]
18. Improvement of glycerol catabolism in Bacillus licheniformis for production of poly-γ-glutamic acid. Zhan Y, Zhu C, Sheng B, Cai D, Wang Q, Wen Z, Chen S. Appl Microbiol Biotechnol; 2017 Oct 26; 101(19):7155-7164. PubMed ID: 28804802 [Abstract] [Full Text] [Related]
19. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S. Sci Rep; 2017 Feb 23; 7():43404. PubMed ID: 28230096 [Abstract] [Full Text] [Related]
20. Poly-L-gamma-glutamic acid production by recombinant Bacillus subtilis without pgsA gene. Sawada K, Araki H, Takimura Y, Masuda K, Kageyama Y, Ozaki K, Hagihara H. AMB Express; 2018 Jul 03; 8(1):110. PubMed ID: 29971620 [Abstract] [Full Text] [Related] Page: [Next] [New Search]