These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


323 related items for PubMed ID: 31458

  • 1. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.
    Becker BF, Duhm J.
    J Physiol; 1978 Sep; 282():149-68. PubMed ID: 31458
    [Abstract] [Full Text] [Related]

  • 2. Alkali metal cation transport through the human erythrocyte membrane by the anion exchange mechanism.
    Funder J.
    Acta Physiol Scand; 1980 Jan; 108(1):31-7. PubMed ID: 7376905
    [Abstract] [Full Text] [Related]

  • 3. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole.
    Duhm J, Becker BF.
    Pflugers Arch; 1977 Jan 17; 367(3):211-9. PubMed ID: 13345
    [Abstract] [Full Text] [Related]

  • 4. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.
    Duhm J, Becker BF.
    J Membr Biol; 1979 Dec 31; 51(3-4):263-86. PubMed ID: 43898
    [Abstract] [Full Text] [Related]

  • 5. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y, Mo S, Mota de Freitas D.
    Biochemistry; 1996 Sep 24; 35(38):12433-42. PubMed ID: 8823178
    [Abstract] [Full Text] [Related]

  • 6. Studies on lithium transport across the red cell membrane. VI. Properties of a sulfhydryl group involved in ouabain-resistant Na+-Li+ (and Na+-Na+) exchange in human and bovine erythrocytes.
    Becker BF, Duhm J.
    J Membr Biol; 1979 Dec 31; 51(3-4):287-310. PubMed ID: 231659
    [Abstract] [Full Text] [Related]

  • 7. Enhancement of anion equilibrium exchange by dansylation of the red blood cell membrane.
    Legrum B, Fasold H, Passow H.
    Hoppe Seylers Z Physiol Chem; 1980 Oct 31; 361(10):1573-90. PubMed ID: 7450677
    [Abstract] [Full Text] [Related]

  • 8. [Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media].
    Iurinskaia VE, Moshkov AV, Goriachaia TS, Vereninov AA.
    Tsitologiia; 2013 Oct 31; 55(10):703-12. PubMed ID: 25509124
    [Abstract] [Full Text] [Related]

  • 9. Anion-dependent cation transport in erythrocytes.
    Ellory JC, Dunham PB, Logue PJ, Stewart GW.
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec 01; 299(1097):483-95. PubMed ID: 6130541
    [Abstract] [Full Text] [Related]

  • 10. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O, Cabantchik ZI.
    J Membr Biol; 1983 Dec 01; 71(1-2):149-61. PubMed ID: 6834420
    [Abstract] [Full Text] [Related]

  • 11. Deoxygenation-induced cation fluxes in sickle cells. III. Cation selectivity and response to pH and membrane potential.
    Joiner CH, Morris CL, Cooper ES.
    Am J Physiol; 1993 Mar 01; 264(3 Pt 1):C734-44. PubMed ID: 8460677
    [Abstract] [Full Text] [Related]

  • 12. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 1: Evaluation of a simple uptake test to assess the activity of the two transport systems.
    Duhm J, Göbel BO.
    Hypertension; 1982 Mar 01; 4(4):468-76. PubMed ID: 7152628
    [Abstract] [Full Text] [Related]

  • 13. Studies on the cation permeability of human red cell ghosts. Characterization and biological significance of two membrane sites with high affinities for Ca.
    Porzig H.
    J Membr Biol; 1977 Mar 23; 31(4):317-49. PubMed ID: 15126
    [Abstract] [Full Text] [Related]

  • 14. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C, de Franceschi L.
    J Cell Physiol; 1993 Feb 23; 154(2):271-80. PubMed ID: 8381125
    [Abstract] [Full Text] [Related]

  • 15. Effects of bicarbonate on lithium transport in human red cells.
    Funder J, Tosteson DC, Wieth JO.
    J Gen Physiol; 1978 Jun 23; 71(6):721-46. PubMed ID: 670928
    [Abstract] [Full Text] [Related]

  • 16. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.
    Wieth JO.
    J Physiol; 1979 Sep 23; 294():521-39. PubMed ID: 512956
    [Abstract] [Full Text] [Related]

  • 17. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB, Stewart GW, Ellory JC.
    Proc Natl Acad Sci U S A; 1980 Mar 23; 77(3):1711-5. PubMed ID: 6929518
    [Abstract] [Full Text] [Related]

  • 18. Lithium transport pathways in human, chicken and eel erythrocytes.
    Romano L, Battaglia M, Cordì R, Rinaldi C, Leucci S, Amato A.
    Biochem Biophys Res Commun; 1995 May 05; 210(1):119-25. PubMed ID: 7741730
    [Abstract] [Full Text] [Related]

  • 19. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism.
    Knauf PA, Law FY, Marchant PJ.
    J Gen Physiol; 1983 Jan 05; 81(1):95-126. PubMed ID: 6833998
    [Abstract] [Full Text] [Related]

  • 20. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium].
    Orlov SN, Pokudin NI, Kotelevtsev IuV.
    Biokhimiia; 1987 Aug 05; 52(8):1373-86. PubMed ID: 2444274
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.