These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
398 related items for PubMed ID: 31458611
21. Strong, flexible, and highly conductive cellulose nanofibril/PEDOT:PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Liu K, Du H, Liu W, Zhang M, Wang Y, Liu H, Zhang X, Xu T, Si C. Nanoscale; 2022 Oct 21; 14(40):14902-14912. PubMed ID: 36047909 [Abstract] [Full Text] [Related]
22. Influence of Graphene Nanoplatelet Lateral Size on the Electrical Conductivity and Electromagnetic Interference Shielding Performance of Polyester Nanocomposites. Madinehei M, Kuester S, Kaydanova T, Moghimian N, David É. Polymers (Basel); 2021 Jul 31; 13(15):. PubMed ID: 34372170 [Abstract] [Full Text] [Related]
23. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. Han G, Ma Z, Zhou B, He C, Wang B, Feng Y, Ma J, Sun L, Liu C. J Colloid Interface Sci; 2021 Feb 01; 583():571-578. PubMed ID: 33038606 [Abstract] [Full Text] [Related]
24. Scalable synthesis of high-quality, reduced graphene oxide with a large C/O ratio and its dispersion in a chemically modified polyimide matrix for electromagnetic interference shielding applications. Mehmood Z, Shah SAA, Omer S, Idrees R, Saeed S. RSC Adv; 2024 Feb 29; 14(11):7641-7654. PubMed ID: 38440276 [Abstract] [Full Text] [Related]
25. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. Hsiao ST, Ma CC, Tien HW, Liao WH, Wang YS, Li SM, Yang CY, Lin SC, Yang RB. ACS Appl Mater Interfaces; 2015 Feb 04; 7(4):2817-26. PubMed ID: 25569714 [Abstract] [Full Text] [Related]
26. Facile Fabrication of PBS/CNTs Nanocomposite Foam for Electromagnetic Interference Shielding. Luo J, Yin D, Yu K, Zhou H, Wen B, Wang X. Chemphyschem; 2022 Feb 16; 23(4):e202100778. PubMed ID: 34973043 [Abstract] [Full Text] [Related]
27. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. Wu Y, Wang Z, Liu X, Shen X, Zheng Q, Xue Q, Kim JK. ACS Appl Mater Interfaces; 2017 Mar 15; 9(10):9059-9069. PubMed ID: 28224798 [Abstract] [Full Text] [Related]
28. Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. Lin S, Ju S, Zhang J, Shi G, He Y, Jiang D. RSC Adv; 2019 Jan 09; 9(3):1419-1427. PubMed ID: 35517999 [Abstract] [Full Text] [Related]
29. Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. Shi Y, Yao A, Han J, Wang H, Feng Y, Fu L, Yang F, Song P. J Colloid Interface Sci; 2023 Jun 15; 640():179-191. PubMed ID: 36848771 [Abstract] [Full Text] [Related]
30. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK. Adv Mater; 2014 Aug 20; 26(31):5480-7. PubMed ID: 24715671 [Abstract] [Full Text] [Related]
31. Carbon Nanotube versus Graphene Nanoribbon: Impact of Nanofiller Geometry on Electromagnetic Interference Shielding of Polyvinylidene Fluoride Nanocomposites. Arjmand M, Sadeghi S, Otero Navas I, Zamani Keteklahijani Y, Dordanihaghighi S, Sundararaj U. Polymers (Basel); 2019 Jun 20; 11(6):. PubMed ID: 31226743 [Abstract] [Full Text] [Related]
32. Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance. Li H, Jing L, Ngoh ZL, Tay RY, Lin J, Wang H, Tsang SH, Teo EHT. ACS Appl Mater Interfaces; 2018 Dec 05; 10(48):41707-41716. PubMed ID: 30403340 [Abstract] [Full Text] [Related]
33. A self-assembled graphene/polyurethane sponge for excellent electromagnetic interference shielding performance. Hu Z, Ji X, Li B, Luo Y. RSC Adv; 2019 Aug 13; 9(44):25829-25835. PubMed ID: 35530052 [Abstract] [Full Text] [Related]
34. Biomass-Derived Thermally Annealed Interconnected Sulfur-Doped Graphene as a Shield against Electromagnetic Interference. Shahzad F, Kumar P, Kim YH, Hong SM, Koo CM. ACS Appl Mater Interfaces; 2016 Apr 13; 8(14):9361-9. PubMed ID: 27002336 [Abstract] [Full Text] [Related]
35. Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness. Wang Z, Mao B, Wang Q, Yu J, Dai J, Song R, Pu Z, He D, Wu Z, Mu S. Small; 2018 May 13; 14(20):e1704332. PubMed ID: 29665217 [Abstract] [Full Text] [Related]
36. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Liang C, Song P, Qiu H, Zhang Y, Ma X, Qi F, Gu H, Kong J, Cao D, Gu J. Nanoscale; 2019 Nov 28; 11(46):22590-22598. PubMed ID: 31746889 [Abstract] [Full Text] [Related]