These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 31464432

  • 1. Role of Amino Acid Residues for Dioxygen Activation in the Second Coordination Sphere of the Dicopper Site of pMMO.
    Miyanishi M, Abe T, Hori Y, Shiota Y, Yoshizawa K.
    Inorg Chem; 2019 Sep 16; 58(18):12280-12288. PubMed ID: 31464432
    [Abstract] [Full Text] [Related]

  • 2. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study.
    Shiota Y, Juhász G, Yoshizawa K.
    Inorg Chem; 2013 Jul 15; 52(14):7907-17. PubMed ID: 23808646
    [Abstract] [Full Text] [Related]

  • 3. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study.
    Yoshizawa K, Shiota Y.
    J Am Chem Soc; 2006 Aug 02; 128(30):9873-81. PubMed ID: 16866545
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH, Shiota Y, Staykov A, Yoshizawa K.
    Acc Chem Res; 2018 Oct 16; 51(10):2382-2390. PubMed ID: 30207444
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mechanistic Insights into the Dicopper-Complex-Catalyzed Hydroxylation of Methane and Benzene Using Nitric Oxide: A DFT Study.
    Abe T, Kametani Y, Yoshizawa K, Shiota Y.
    Inorg Chem; 2021 Apr 05; 60(7):4599-4609. PubMed ID: 33755454
    [Abstract] [Full Text] [Related]

  • 14. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J, Garcia-Bosch I, Company A, Costas M.
    Acc Chem Res; 2015 Aug 18; 48(8):2397-406. PubMed ID: 26207342
    [Abstract] [Full Text] [Related]

  • 15. Catalytic Performance of a Dicopper-Oxo Complex for Methane Hydroxylation.
    Hori Y, Shiota Y, Tsuji T, Kodera M, Yoshizawa K.
    Inorg Chem; 2018 Jan 02; 57(1):8-11. PubMed ID: 29249146
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Elucidation of the tyrosinase/O2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis.
    Kipouros I, Stańczak A, Ginsbach JW, Andrikopoulos PC, Rulíšek L, Solomon EI.
    Proc Natl Acad Sci U S A; 2022 Aug 16; 119(33):e2205619119. PubMed ID: 35939688
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.