These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 31466754
1. Expression of thermal tolerance genes in two Drosophila species with different acclimation capacities. Sørensen JG, Giribets MP, Tarrío R, Rodríguez-Trelles F, Schou MF, Loeschcke V. J Therm Biol; 2019 Aug; 84():200-207. PubMed ID: 31466754 [Abstract] [Full Text] [Related]
2. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster. Sørensen JG, Loeschcke V, Kristensen TN. J Exp Biol; 2013 Mar 01; 216(Pt 5):809-14. PubMed ID: 23155086 [Abstract] [Full Text] [Related]
3. Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans. Manenti T, Loeschcke V, Sørensen JG. J Insect Physiol; 2018 Jan 01; 104():40-47. PubMed ID: 29175088 [Abstract] [Full Text] [Related]
4. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Shilova VY, Zatsepina OG, Garbuz DG, Funikov SY, Zelentsova ES, Schostak NG, Kulikov AM, Evgen'ev MB. Insect Mol Biol; 2018 Feb 01; 27(1):61-72. PubMed ID: 28796386 [Abstract] [Full Text] [Related]
5. Basal hsp70 expression levels do not explain adaptive variation of the warm- and cold-climate O3 + 4 + 7 and OST gene arrangements of Drosophila subobscura. Puig Giribets M, Santos M, García Guerreiro MP. BMC Evol Biol; 2020 Jan 31; 20(1):17. PubMed ID: 32005133 [Abstract] [Full Text] [Related]
6. [Evolution of the response to heat shock in genus Drosophila]. Garbuz DG, Molodtsov VB, Velikodvorskaia VV, Evgen'ev MB, Zatsepina OG. Genetika; 2002 Aug 31; 38(8):1097-109. PubMed ID: 12244694 [Abstract] [Full Text] [Related]
7. The Dca gene involved in cold adaptation in Drosophila melanogaster arose by duplication of the ancestral regucalcin gene. Arboleda-Bustos CE, Segarra C. Mol Biol Evol; 2011 Aug 31; 28(8):2185-95. PubMed ID: 21339509 [Abstract] [Full Text] [Related]
8. Phylogenetic relationships between Drosophila subobscura, D. guanche and D. madeirensis based on Southern analysis of heat shock genes. Molto MD, Martinez-Sebastian MJ, De Frutos R. Hereditas; 1994 Aug 31; 120(3):217-23. PubMed ID: 7928386 [Abstract] [Full Text] [Related]
9. A functional study of the role of Turandot genes in Drosophila melanogaster: An emerging candidate mechanism for inducible heat tolerance. Amstrup AB, Bæk I, Loeschcke V, Givskov Sørensen J. J Insect Physiol; 2022 Aug 31; 143():104456. PubMed ID: 36396076 [Abstract] [Full Text] [Related]
10. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress. Boher F, Trefault N, Piulachs MD, Bellés X, Godoy-Herrera R, Bozinovic F. Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug 31; 162(4):391-6. PubMed ID: 22561660 [Abstract] [Full Text] [Related]
11. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster). Štětina T, Koštál V, Korbelová J. PLoS One; 2015 Aug 31; 10(6):e0128976. PubMed ID: 26034990 [Abstract] [Full Text] [Related]
12. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. Nguyen AD, Gotelli NJ, Cahan SH. BMC Evol Biol; 2016 Jan 19; 16():15. PubMed ID: 26787420 [Abstract] [Full Text] [Related]
13. Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D, Evgen'ev M. Cell Stress Chaperones; 2020 Mar 19; 25(2):305-315. PubMed ID: 32040825 [Abstract] [Full Text] [Related]
14. Transcriptional and translational study of the Drosophila subobscura hsp83 gene in normal and heat-shock conditions. Arbona M, de Frutos R, Tanguay RM. Genome; 1993 Aug 19; 36(4):694-700. PubMed ID: 8405986 [Abstract] [Full Text] [Related]
15. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY. Cavicchi S, Guerra D, Torre V, Huey RB. Evolution; 1995 Aug 19; 49(4):676-684. PubMed ID: 28565130 [Abstract] [Full Text] [Related]
16. A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species. Krebs RA. Cell Stress Chaperones; 1999 Dec 19; 4(4):243-9. PubMed ID: 10590838 [Abstract] [Full Text] [Related]
17. Genetic analysis of heat shock response in three Drosophila species of the obscura group. Moltó MD, Pascual L, Martínez-Sebastián MJ, de Frutos R. Genome; 1992 Oct 19; 35(5):870-80. PubMed ID: 1427063 [Abstract] [Full Text] [Related]