These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 31478108
21. Diversification of an ancient theme: hydroxynitrile glucosides. Bjarnholt N, Rook F, Motawia MS, Cornett C, Jørgensen C, Olsen CE, Jaroszewski JW, Bak S, Møller BL. Phytochemistry; 2008 May; 69(7):1507-16. PubMed ID: 18342345 [Abstract] [Full Text] [Related]
22. New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz). Sreeja VG, Nagahara N, Li Q, Minami M. Br J Nutr; 2003 Aug; 90(2):467-72. PubMed ID: 12908909 [Abstract] [Full Text] [Related]
23. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels. Narayanan NN, Ihemere U, Ellery C, Sayre RT. PLoS One; 2011 Aug; 6(7):e21996. PubMed ID: 21799761 [Abstract] [Full Text] [Related]
24. Cyanogenesis and the role of cyanogenic compounds in insects. Nahrstedt A. Ciba Found Symp; 1988 Aug; 140():131-50. PubMed ID: 3073053 [Abstract] [Full Text] [Related]
25. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes. Sornyotha S, Kyu KL, Ratanakhanokchai K. J Biosci Bioeng; 2010 Jan; 109(1):9-14. PubMed ID: 20129074 [Abstract] [Full Text] [Related]
26. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Nielsen KA, Hrmova M, Nielsen JN, Forslund K, Ebert S, Olsen CE, Fincher GB, Møller BL. Planta; 2006 Apr; 223(5):1010-23. PubMed ID: 16307283 [Abstract] [Full Text] [Related]
27. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Bayoumi SA, Rowan MG, Beeching JR, Blagbrough IS. Phytochemistry; 2010 Apr; 71(5-6):598-604. PubMed ID: 20137795 [Abstract] [Full Text] [Related]
28. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Zagrobelny M, Bak S, Olsen CE, Møller BL. Insect Biochem Mol Biol; 2007 Nov; 37(11):1189-97. PubMed ID: 17916505 [Abstract] [Full Text] [Related]
29. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions. Gleadow R, Pegg A, Blomstedt CK. J Exp Bot; 2016 Oct; 67(18):5403-5413. PubMed ID: 27506218 [Abstract] [Full Text] [Related]
30. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. Zagrobelny M, Møller BL. Phytochemistry; 2011 Sep; 72(13):1585-92. PubMed ID: 21429539 [Abstract] [Full Text] [Related]
31. Metabolic fates in humans of linamarin in cassava flour ingested as stiff porridge. Carlsson L, Mlingi N, Juma A, Ronquist G, Rosling H. Food Chem Toxicol; 1999 Apr; 37(4):307-12. PubMed ID: 10418947 [Abstract] [Full Text] [Related]
32. Linamarase expression in cassava cultivars with roots of low- and high-cyanide content. Santana MA, Vásquez V, Matehus J, Aldao RR. Plant Physiol; 2002 Aug; 129(4):1686-94. PubMed ID: 12177481 [Abstract] [Full Text] [Related]
33. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Zygaena larvae facilitates cyanide release. Pentzold S, Jensen MK, Matthes A, Olsen CE, Petersen BL, Clausen H, Møller BL, Bak S, Zagrobelny M. R Soc Open Sci; 2017 Jun; 4(6):170262. PubMed ID: 28680679 [Abstract] [Full Text] [Related]
34. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide. Thygesen LG, Jørgensen K, Møller BL, Engelsen SB. Appl Spectrosc; 2004 Feb; 58(2):212-7. PubMed ID: 15000716 [Abstract] [Full Text] [Related]
35. Characterization of sucrose uptake system in cassava (Manihot esculenta Crantz). Eksittikul T, Chulavatnatol M, Limpaseni T. Plant Sci; 2001 Mar; 160(4):733-737. PubMed ID: 11448748 [Abstract] [Full Text] [Related]
36. Structural characterization of cassava linamarase-linamarin enzyme complex: an integrated computational approach. Paul L, Shadrack DM, Mudogo CN, Mtei KM, Machunda RL, Ntie-Kang F. J Biomol Struct Dyn; 2022 Mar; 40(19):9270-9278. PubMed ID: 34018467 [Abstract] [Full Text] [Related]
37. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae). Riis L, Bellotti AC, Bonierbale M, O'Brien GM. J Econ Entomol; 2003 Dec; 96(6):1905-14. PubMed ID: 14977132 [Abstract] [Full Text] [Related]
38. A molecular and biochemical analysis of the structure of the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Cranz). Hughes MA, Brown K, Pancoro A, Murray BS, Oxtoby E, Hughes J. Arch Biochem Biophys; 1992 Jun; 295(2):273-9. PubMed ID: 1586156 [Abstract] [Full Text] [Related]
39. Cassava: an appraisal of its phytochemistry and its biotechnological prospects. Blagbrough IS, Bayoumi SA, Rowan MG, Beeching JR. Phytochemistry; 2010 Dec; 71(17-18):1940-51. PubMed ID: 20943239 [Abstract] [Full Text] [Related]
40. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis. Keresztessy Z, Brown K, Dunn MA, Hughes MA. Biochem J; 2001 Jan 15; 353(Pt 2):199-205. PubMed ID: 11139381 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]