These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


548 related items for PubMed ID: 31480709

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Advanced UAV-WSN System for Intelligent Monitoring in Precision Agriculture.
    Popescu D, Stoican F, Stamatescu G, Ichim L, Dragana C.
    Sensors (Basel); 2020 Feb 03; 20(3):. PubMed ID: 32028736
    [Abstract] [Full Text] [Related]

  • 3. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review.
    Jawad HM, Nordin R, Gharghan SK, Jawad AM, Ismail M.
    Sensors (Basel); 2017 Aug 03; 17(8):. PubMed ID: 28771214
    [Abstract] [Full Text] [Related]

  • 4. A wireless sensor network-based ubiquitous paprika growth management system.
    Hwang J, Shin C, Yoe H.
    Sensors (Basel); 2010 Aug 03; 10(12):11566-89. PubMed ID: 22163543
    [Abstract] [Full Text] [Related]

  • 5. EEDC: An Energy Efficient Data Communication Scheme Based on New Routing Approach in Wireless Sensor Networks for Future IoT Applications.
    Gupta D, Wadhwa S, Rani S, Khan Z, Boulila W.
    Sensors (Basel); 2023 Oct 30; 23(21):. PubMed ID: 37960536
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture.
    Martínez R, Pastor JÁ, Álvarez B, Iborra A.
    Sensors (Basel); 2016 Nov 23; 16(11):. PubMed ID: 27886091
    [Abstract] [Full Text] [Related]

  • 8. Soil Sensors and Plant Wearables for Smart and Precision Agriculture.
    Yin H, Cao Y, Marelli B, Zeng X, Mason AJ, Cao C.
    Adv Mater; 2021 May 23; 33(20):e2007764. PubMed ID: 33829545
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.
    Ferrández-Pastor FJ, García-Chamizo JM, Nieto-Hidalgo M, Mora-Pascual J, Mora-Martínez J.
    Sensors (Basel); 2016 Jul 22; 16(7):. PubMed ID: 27455265
    [Abstract] [Full Text] [Related]

  • 11. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.
    Hwang J, Shin C, Yoe H.
    Sensors (Basel); 2010 Jul 22; 10(12):11189-211. PubMed ID: 22163520
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V, Comba L, Khaliq A, Chiaberge M, Gay P.
    Sensors (Basel); 2020 Apr 29; 20(9):. PubMed ID: 32365636
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Joint Communication and Sensing: A Proof of Concept and Datasets for Greenhouse Monitoring Using LoRaWAN.
    Singh RK, Rahmani MH, Weyn M, Berkvens R.
    Sensors (Basel); 2022 Feb 09; 22(4):. PubMed ID: 35214228
    [Abstract] [Full Text] [Related]

  • 18. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management.
    Bogena HR, Weuthen A, Huisman JA.
    Sensors (Basel); 2022 Dec 13; 22(24):. PubMed ID: 36560160
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The potential of remote sensing of cover crops to benefit sustainable and precision fertilization.
    Futerman SI, Laor Y, Eshel G, Cohen Y.
    Sci Total Environ; 2023 Sep 15; 891():164630. PubMed ID: 37270005
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.