These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


863 related items for PubMed ID: 31484736

  • 1. MoGT2 Is Essential for Morphogenesis and Pathogenicity of Magnaporthe oryzae.
    Deng S, Sun W, Dong L, Cui G, Deng YZ.
    mSphere; 2019 Sep 04; 4(5):. PubMed ID: 31484736
    [Abstract] [Full Text] [Related]

  • 2. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae.
    He M, Xu Y, Chen J, Luo Y, Lv Y, Su J, Kershaw MJ, Li W, Wang J, Yin J, Zhu X, Liu X, Chern M, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Ren Z, Wu X, Li P, Li S, Peng Y, Lin F, Talbot NJ, Chen X.
    Autophagy; 2018 Sep 04; 14(9):1543-1561. PubMed ID: 29929416
    [Abstract] [Full Text] [Related]

  • 3. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J.
    New Phytol; 2016 Aug 04; 211(3):1035-51. PubMed ID: 27041000
    [Abstract] [Full Text] [Related]

  • 4. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y, Que Y, Liu Y, Yue X, Meng X, Zhang Z, Wang Z.
    Curr Genet; 2015 Nov 04; 61(4):641-51. PubMed ID: 25944571
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. MoGrr1, a novel F-box protein, is involved in conidiogenesis and cell wall integrity and is critical for the full virulence of Magnaporthe oryzae.
    Guo M, Gao F, Zhu X, Nie X, Pan Y, Gao Z.
    Appl Microbiol Biotechnol; 2015 Oct 04; 99(19):8075-88. PubMed ID: 26227409
    [Abstract] [Full Text] [Related]

  • 7. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae.
    Guo M, Tan L, Nie X, Zhang Z.
    Virulence; 2017 Oct 03; 8(7):1335-1354. PubMed ID: 28448785
    [Abstract] [Full Text] [Related]

  • 8. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzae.
    Aliyu SR, Lin L, Chen X, Abdul W, Lin Y, Otieno FJ, Shabbir A, Batool W, Zhang Y, Tang W, Wang Z, Norvienyeku J.
    Fungal Genet Biol; 2019 Jun 03; 127():23-34. PubMed ID: 30822500
    [Abstract] [Full Text] [Related]

  • 9. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae.
    Kim S, Park SY, Kim KS, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH.
    PLoS Genet; 2009 Dec 03; 5(12):e1000757. PubMed ID: 19997500
    [Abstract] [Full Text] [Related]

  • 10. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens.
    Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A, Ikeda K, Irieda H, Yoshino K, Yoshida K, Matsumura H, Tosa Y, Win J, Kamoun S, Takano Y, Terauchi R.
    PLoS Pathog; 2012 Dec 03; 8(5):e1002711. PubMed ID: 22589729
    [Abstract] [Full Text] [Related]

  • 11. Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Li Y, Liang S, Yan X, Wang H, Li D, Soanes DM, Talbot NJ, Wang Z, Wang Z.
    Mol Plant Microbe Interact; 2010 Oct 03; 23(10):1260-74. PubMed ID: 20831406
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The RasGEF MoCdc25 regulates vegetative growth, conidiation and appressorium-mediated infection in the rice blast fungus Magnaporthe oryzae.
    Xiao Y, Lv W, Tong Q, Xu Z, Wang Z.
    Fungal Genet Biol; 2023 Oct 03; 168():103825. PubMed ID: 37460083
    [Abstract] [Full Text] [Related]

  • 15. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae.
    Pan Y, Pan R, Tan L, Zhang Z, Guo M.
    Curr Genet; 2019 Feb 03; 65(1):223-239. PubMed ID: 29946987
    [Abstract] [Full Text] [Related]

  • 16. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae.
    Khan IA, Ning G, Liu X, Feng X, Lin F, Lu J.
    Microbiol Res; 2015 Sep 03; 178():51-8. PubMed ID: 26302847
    [Abstract] [Full Text] [Related]

  • 17. Isopropylmalate isomerase MoLeu1 orchestrates leucine biosynthesis, fungal development, and pathogenicity in Magnaporthe oryzae.
    Tang W, Jiang H, Zheng Q, Chen X, Wang R, Yang S, Zhao G, Liu J, Norvienyeku J, Wang Z.
    Appl Microbiol Biotechnol; 2019 Jan 03; 103(1):327-337. PubMed ID: 30357439
    [Abstract] [Full Text] [Related]

  • 18. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Sun D, Cao H, Shi Y, Huang P, Dong B, Liu X, Lin F, Lu J.
    Mol Plant Pathol; 2017 Oct 03; 18(8):1075-1088. PubMed ID: 27434465
    [Abstract] [Full Text] [Related]

  • 19. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity.
    Han JH, Lee HM, Shin JH, Lee YH, Kim KS.
    Environ Microbiol; 2015 Nov 03; 17(11):4672-89. PubMed ID: 26248223
    [Abstract] [Full Text] [Related]

  • 20. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus.
    Sabnam N, Roy Barman S.
    Fungal Genet Biol; 2017 Aug 03; 105():37-51. PubMed ID: 28576657
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.