These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


713 related items for PubMed ID: 31493228

  • 1. Epigenetic Clock: Just a Convenient Marker or an Active Driver of Aging?
    Ashapkin VV, Kutueva LI, Vanyushin BF.
    Adv Exp Med Biol; 2019; 1178():175-206. PubMed ID: 31493228
    [Abstract] [Full Text] [Related]

  • 2. Aging as an Epigenetic Phenomenon.
    Ashapkin VV, Kutueva LI, Vanyushin BF.
    Curr Genomics; 2017 Oct; 18(5):385-407. PubMed ID: 29081695
    [Abstract] [Full Text] [Related]

  • 3. DNA methylation and healthy human aging.
    Jones MJ, Goodman SJ, Kobor MS.
    Aging Cell; 2015 Dec; 14(6):924-32. PubMed ID: 25913071
    [Abstract] [Full Text] [Related]

  • 4. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions.
    Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD.
    Genome Biol; 2017 Mar 28; 18(1):58. PubMed ID: 28351383
    [Abstract] [Full Text] [Related]

  • 5. DNA Methylation as a Biomarker of Aging in Epidemiologic Studies.
    Lim U, Song MA.
    Methods Mol Biol; 2018 Mar 28; 1856():219-231. PubMed ID: 30178254
    [Abstract] [Full Text] [Related]

  • 6. Epigenetic genome-wide association methylation in aging and longevity.
    Ben-Avraham D, Muzumdar RH, Atzmon G.
    Epigenomics; 2012 Oct 28; 4(5):503-9. PubMed ID: 23130832
    [Abstract] [Full Text] [Related]

  • 7. DNA methylation-based age clocks: From age prediction to age reversion.
    Noroozi R, Ghafouri-Fard S, Pisarek A, Rudnicka J, Spólnicka M, Branicki W, Taheri M, Pośpiech E.
    Ageing Res Rev; 2021 Jul 28; 68():101314. PubMed ID: 33684551
    [Abstract] [Full Text] [Related]

  • 8. Centenarians consistently present a younger epigenetic age than their chronological age with four epigenetic clocks based on a small number of CpG sites.
    Daunay A, Hardy LM, Bouyacoub Y, Sahbatou M, Touvier M, Blanché H, Deleuze JF, How-Kit A.
    Aging (Albany NY); 2022 Oct 03; 14(19):7718-7733. PubMed ID: 36202132
    [Abstract] [Full Text] [Related]

  • 9. Age-dependent methylation in epigenetic clock CpGs is associated with G-quadruplex, co-transcriptionally formed RNA structures and tentative splice sites.
    Malousi A, Andreou AZ, Georgiou E, Tzimagiorgis G, Kovatsi L, Kouidou S.
    Epigenetics; 2018 Oct 03; 13(8):808-821. PubMed ID: 30270726
    [Abstract] [Full Text] [Related]

  • 10. Aging Epigenetics: Accumulation of Errors or Realization of a Specific Program?
    Ashapkin VV, Kutueva LI, Vanyushin BF.
    Biochemistry (Mosc); 2015 Nov 03; 80(11):1406-17. PubMed ID: 26615432
    [Abstract] [Full Text] [Related]

  • 11. Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma.
    Galamb O, Kalmár A, Barták BK, Patai ÁV, Leiszter K, Péterfia B, Wichmann B, Valcz G, Veres G, Tulassay Z, Molnár B.
    World J Gastroenterol; 2016 Dec 21; 22(47):10325-10340. PubMed ID: 28058013
    [Abstract] [Full Text] [Related]

  • 12. Deconvolution of the epigenetic age discloses distinct inter-personal variability in epigenetic aging patterns.
    Shahal T, Segev E, Konstantinovsky T, Marcus Y, Shefer G, Pasmanik-Chor M, Buch A, Ebenstein Y, Zimmet P, Stern N.
    Epigenetics Chromatin; 2022 Mar 07; 15(1):9. PubMed ID: 35255955
    [Abstract] [Full Text] [Related]

  • 13. Epigenetic changes during aging and their reprogramming potential.
    Kane AE, Sinclair DA.
    Crit Rev Biochem Mol Biol; 2019 Feb 07; 54(1):61-83. PubMed ID: 30822165
    [Abstract] [Full Text] [Related]

  • 14. Reconfiguration of DNA methylation in aging.
    Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P.
    Mech Ageing Dev; 2015 Nov 07; 151():60-70. PubMed ID: 25708826
    [Abstract] [Full Text] [Related]

  • 15. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes.
    Grodstein F, Lemos B, Yu L, Klein HU, Iatrou A, Buchman AS, Shireby GL, Mill J, Schneider JA, De Jager PL, Bennett DA.
    Neurobiol Dis; 2021 Sep 07; 157():105428. PubMed ID: 34153464
    [Abstract] [Full Text] [Related]

  • 16. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort.
    Tan Q, Heijmans BT, Hjelmborg JV, Soerensen M, Christensen K, Christiansen L.
    Int J Epidemiol; 2016 Aug 07; 45(4):1146-1158. PubMed ID: 27498152
    [Abstract] [Full Text] [Related]

  • 17. Aging-associated DNA methylation changes in middle-aged individuals: the Young Finns study.
    Kananen L, Marttila S, Nevalainen T, Jylhävä J, Mononen N, Kähönen M, Raitakari OT, Lehtimäki T, Hurme M.
    BMC Genomics; 2016 Feb 09; 17():103. PubMed ID: 26861258
    [Abstract] [Full Text] [Related]

  • 18. Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging.
    Li A, Koch Z, Ideker T.
    J Intern Med; 2022 Nov 09; 292(5):733-744. PubMed ID: 35726002
    [Abstract] [Full Text] [Related]

  • 19. Quantitative Analysis of DNA Methylation by Bisulfite Sequencing.
    Ashapkin VV, Kutueva LI, Vanyushin BF.
    Methods Mol Biol; 2020 Nov 09; 2138():297-312. PubMed ID: 32219758
    [Abstract] [Full Text] [Related]

  • 20. A Statistical Framework to Identify Deviation from Time Linearity in Epigenetic Aging.
    Snir S, vonHoldt BM, Pellegrini M.
    PLoS Comput Biol; 2016 Nov 09; 12(11):e1005183. PubMed ID: 27835646
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.