These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


277 related items for PubMed ID: 31499932

  • 21. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y, Li K, He J, Wang J.
    Entropy (Basel); 2023 Mar 10; 25(3):. PubMed ID: 36981372
    [Abstract] [Full Text] [Related]

  • 22. Measurement-based quantum heat engine in a multilevel system.
    Anka MF, de Oliveira TR, Jonathan D.
    Phys Rev E; 2021 Nov 10; 104(5-1):054128. PubMed ID: 34942804
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.
    Altintas F, Müstecaplıoğlu ÖE.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug 10; 92(2):022142. PubMed ID: 26382378
    [Abstract] [Full Text] [Related]

  • 26. Algorithmic cooling and scalable NMR quantum computers.
    Boykin PO, Mor T, Roychowdhury V, Vatan F, Vrijen R.
    Proc Natl Acad Sci U S A; 2002 Mar 19; 99(6):3388-93. PubMed ID: 11904402
    [Abstract] [Full Text] [Related]

  • 27. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H, Guo H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan 19; 85(1 Pt 1):011146. PubMed ID: 22400551
    [Abstract] [Full Text] [Related]

  • 28. The second law, Maxwell's demon, and work derivable from quantum heat engines.
    Kieu TD.
    Phys Rev Lett; 2004 Oct 01; 93(14):140403. PubMed ID: 15524772
    [Abstract] [Full Text] [Related]

  • 29. Relativistic quantum heat engine from uncertainty relation standpoint.
    Chattopadhyay P, Paul G.
    Sci Rep; 2019 Nov 18; 9(1):16967. PubMed ID: 31740692
    [Abstract] [Full Text] [Related]

  • 30. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM, Lee S, Chun HM, Noh JD.
    Phys Rev E; 2019 Jul 18; 100(1-1):012148. PubMed ID: 31499873
    [Abstract] [Full Text] [Related]

  • 31. Quantum Performance of Thermal Machines over Many Cycles.
    Watanabe G, Venkatesh BP, Talkner P, Del Campo A.
    Phys Rev Lett; 2017 Feb 03; 118(5):050601. PubMed ID: 28211713
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Finite-time performance of a single-ion quantum Otto engine.
    Chand S, Dasgupta S, Biswas A.
    Phys Rev E; 2021 Mar 03; 103(3-1):032144. PubMed ID: 33862721
    [Abstract] [Full Text] [Related]

  • 39. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot.
    Peña FJ, Zambrano D, Negrete O, De Chiara G, Orellana PA, Vargas P.
    Phys Rev E; 2020 Jan 03; 101(1-1):012116. PubMed ID: 32069598
    [Abstract] [Full Text] [Related]

  • 40. Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: quantum and classical systems.
    Deng J, Wang QH, Liu Z, Hänggi P, Gong J.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec 03; 88(6):062122. PubMed ID: 24483401
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.