These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


327 related items for PubMed ID: 31501288

  • 1. CidR and CcpA Synergistically Regulate Staphylococcus aureus cidABC Expression.
    Sadykov MR, Windham IH, Widhelm TJ, Yajjala VK, Watson SM, Endres JL, Bavari AI, Thomas VC, Bose JL, Bayles KW.
    J Bacteriol; 2019 Dec 01; 201(23):. PubMed ID: 31501288
    [Abstract] [Full Text] [Related]

  • 2. A LysR-type regulator, CidR, is required for induction of the Staphylococcus aureus cidABC operon.
    Yang SJ, Rice KC, Brown RJ, Patton TG, Liou LE, Park YH, Bayles KW.
    J Bacteriol; 2005 Sep 01; 187(17):5893-900. PubMed ID: 16109930
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE, Yother J.
    J Bacteriol; 2007 Jul 01; 189(14):5183-92. PubMed ID: 17496092
    [Abstract] [Full Text] [Related]

  • 7. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K, Kodoi Y, Satomura T, Fujita Y.
    J Bacteriol; 2015 Dec 28; 198(5):830-45. PubMed ID: 26712933
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus.
    Chaudhari SS, Thomas VC, Sadykov MR, Bose JL, Ahn DJ, Zimmerman MC, Bayles KW.
    Mol Microbiol; 2016 Sep 28; 101(6):942-53. PubMed ID: 27253847
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system.
    Jankovic I, Egeter O, Brückner R.
    J Bacteriol; 2001 Jan 28; 183(2):580-6. PubMed ID: 11133951
    [Abstract] [Full Text] [Related]

  • 15. MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of psm Operons in Staphylococcus aureus.
    Jiang Q, Jin Z, Sun B.
    Appl Environ Microbiol; 2018 Aug 15; 84(16):. PubMed ID: 29884758
    [Abstract] [Full Text] [Related]

  • 16. A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation.
    Leiba J, Hartmann T, Cluzel ME, Cohen-Gonsaud M, Delolme F, Bischoff M, Molle V.
    J Biol Chem; 2012 Dec 21; 287(52):43607-19. PubMed ID: 23132867
    [Abstract] [Full Text] [Related]

  • 17. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.
    Yang Y, Zhang L, Huang H, Yang C, Yang S, Gu Y, Jiang W.
    mBio; 2017 Jan 24; 8(1):. PubMed ID: 28119470
    [Abstract] [Full Text] [Related]

  • 18. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y, Nagura K, Eguchi S, Fukuda H, Deutscher J, Fujita Y.
    Mol Microbiol; 1997 Mar 24; 23(6):1203-13. PubMed ID: 9106211
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.