These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
877 related items for PubMed ID: 31502581
21. A Hybrid Docking and Machine Learning Approach to Enhance the Performance of Virtual Screening Carried out on Protein-Protein Interfaces. Singh N, Villoutreix BO. Int J Mol Sci; 2022 Nov 18; 23(22):. PubMed ID: 36430841 [Abstract] [Full Text] [Related]
22. Some remarks on prediction of protein-protein interaction with machine learning. Zhang SW, Wei ZG. Med Chem; 2015 Nov 18; 11(3):254-64. PubMed ID: 25548927 [Abstract] [Full Text] [Related]
23. Prediction of interactions between viral and host proteins using supervised machine learning methods. Barman RK, Saha S, Das S. PLoS One; 2014 Nov 18; 9(11):e112034. PubMed ID: 25375323 [Abstract] [Full Text] [Related]
24. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning. Du T, Liao L, Wu CH, Sun B. Methods; 2016 Nov 01; 110():97-105. PubMed ID: 27282356 [Abstract] [Full Text] [Related]
25. Computational probing protein-protein interactions targeting small molecules. Wang YC, Chen SL, Deng NY, Wang Y. Bioinformatics; 2016 Jan 15; 32(2):226-34. PubMed ID: 26415726 [Abstract] [Full Text] [Related]
26. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping. Lo YS, Huang SH, Luo YC, Lin CY, Yang JM. PLoS One; 2015 Jan 15; 10(1):e0116347. PubMed ID: 25602759 [Abstract] [Full Text] [Related]
27. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY, You ZH, Meng FR, Xu SJ, Wang Y. Int J Mol Sci; 2016 May 18; 17(5):. PubMed ID: 27213337 [Abstract] [Full Text] [Related]
28. Machine Learning Methods in Computational Toxicology. Baskin II. Methods Mol Biol; 2018 May 18; 1800():119-139. PubMed ID: 29934890 [Abstract] [Full Text] [Related]
29. Amalgamation of 3D structure and sequence information for protein-protein interaction prediction. Jha K, Saha S. Sci Rep; 2020 Nov 05; 10(1):19171. PubMed ID: 33154416 [Abstract] [Full Text] [Related]
30. Identification of infectious disease-associated host genes using machine learning techniques. Barman RK, Mukhopadhyay A, Maulik U, Das S. BMC Bioinformatics; 2019 Dec 27; 20(1):736. PubMed ID: 31881961 [Abstract] [Full Text] [Related]
31. Machine learning on protein-protein interaction prediction: models, challenges and trends. Tang T, Zhang X, Liu Y, Peng H, Zheng B, Yin Y, Zeng X. Brief Bioinform; 2023 Mar 19; 24(2):. PubMed ID: 36880207 [Abstract] [Full Text] [Related]
32. Systematic evaluation of machine learning methods for identifying human-pathogen protein-protein interactions. Chen H, Li F, Wang L, Jin Y, Chi CH, Kurgan L, Song J, Shen J. Brief Bioinform; 2021 May 20; 22(3):. PubMed ID: 32459334 [Abstract] [Full Text] [Related]
33. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY, Meng FR, You ZH, Chen X, Yan GY, Hu JP. Protein Sci; 2016 Oct 20; 25(10):1825-33. PubMed ID: 27452983 [Abstract] [Full Text] [Related]
34. Automated feature engineering improves prediction of protein-protein interactions. Sumonja N, Gemovic B, Veljkovic N, Perovic V. Amino Acids; 2019 Aug 20; 51(8):1187-1200. PubMed ID: 31278492 [Abstract] [Full Text] [Related]
35. Protein-protein interaction network with machine learning models and multiomics data reveal potential neurodegenerative disease-related proteins. Yu X, Lai S, Chen H, Chen M. Hum Mol Genet; 2020 May 28; 29(8):1378-1387. PubMed ID: 32277755 [Abstract] [Full Text] [Related]
36. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets. Kaiser TM, Burger PB. Molecules; 2019 Jun 04; 24(11):. PubMed ID: 31167452 [Abstract] [Full Text] [Related]
37. Exploiting machine learning for end-to-end drug discovery and development. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Nat Mater; 2019 May 04; 18(5):435-441. PubMed ID: 31000803 [Abstract] [Full Text] [Related]
38. Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information. Li J, Shi X, You ZH, Yi HC, Chen Z, Lin Q, Fang M. IEEE/ACM Trans Comput Biol Bioinform; 2020 May 04; 17(5):1546-1554. PubMed ID: 31940546 [Abstract] [Full Text] [Related]
39. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures. Liu GH, Shen HB, Yu DJ. J Membr Biol; 2016 Apr 04; 249(1-2):141-53. PubMed ID: 26563228 [Abstract] [Full Text] [Related]
40. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics. Li ZW, You ZH, Chen X, Gui J, Nie R. Int J Mol Sci; 2016 Aug 25; 17(9):. PubMed ID: 27571061 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]