These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 31509714

  • 1. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y, Qin C, Jiang R.
    J Dent Res; 2019 Nov; 98(12):1367-1375. PubMed ID: 31509714
    [Abstract] [Full Text] [Related]

  • 2. Hyaluronic acid is required for palatal shelf movement and its interaction with the tongue during palatal shelf elevation.
    Yonemitsu MA, Lin TY, Yu K.
    Dev Biol; 2020 Jan 01; 457(1):57-68. PubMed ID: 31526805
    [Abstract] [Full Text] [Related]

  • 3. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M, Lan Y, Liu H, Wu Z, Imamura T, Jiang R.
    Dev Dyn; 2021 Apr 01; 250(4):562-573. PubMed ID: 33034111
    [Abstract] [Full Text] [Related]

  • 4. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J.
    BMC Dev Biol; 2014 Jan 17; 14():3. PubMed ID: 24433583
    [Abstract] [Full Text] [Related]

  • 5. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation.
    Yu K, Karuppaiah K, Ornitz DM.
    Dev Dyn; 2015 Nov 17; 244(11):1427-38. PubMed ID: 26250517
    [Abstract] [Full Text] [Related]

  • 6. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y.
    J Biol Chem; 2013 Apr 12; 288(15):10440-50. PubMed ID: 23460641
    [Abstract] [Full Text] [Related]

  • 7. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
    Parada C, Han D, Grimaldi A, Sarrión P, Park SS, Pelikan R, Sanchez-Lara PA, Chai Y.
    Development; 2015 Nov 01; 142(21):3734-45. PubMed ID: 26395480
    [Abstract] [Full Text] [Related]

  • 8. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C, Lan Y, Krumlauf R, Jiang R.
    J Dent Res; 2017 Oct 01; 96(11):1273-1281. PubMed ID: 28692808
    [Abstract] [Full Text] [Related]

  • 9. Deficiency of Fam20b-Catalyzed Glycosaminoglycan Chain Synthesis in Neural Crest Leads to Cleft Palate.
    Chen X, Li N, Hu P, Li L, Li D, Liu H, Zhu L, Xiao J, Liu C.
    Int J Mol Sci; 2023 Jun 01; 24(11):. PubMed ID: 37298583
    [Abstract] [Full Text] [Related]

  • 10. A unique mouse strain expressing Cre recombinase for tissue-specific analysis of gene function in palate and kidney development.
    Lan Y, Wang Q, Ovitt CE, Jiang R.
    Genesis; 2007 Oct 01; 45(10):618-24. PubMed ID: 17941042
    [Abstract] [Full Text] [Related]

  • 11. YAP/TAZ Regulate Elevation and Bone Formation of the Mouse Secondary Palate.
    Goodwin AF, Chen CP, Vo NT, Bush JO, Klein OD.
    J Dent Res; 2020 Nov 01; 99(12):1387-1396. PubMed ID: 32623954
    [Abstract] [Full Text] [Related]

  • 12. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H, Yang X, Bao M, Cao H, Miao X, Zhang X, Gan L, Qiu M, Zhang Z.
    J Biol Chem; 2016 Mar 25; 291(13):7107-18. PubMed ID: 26826126
    [Abstract] [Full Text] [Related]

  • 13. Odd-skipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis.
    Lan Y, Ovitt CE, Cho ES, Maltby KM, Wang Q, Jiang R.
    Development; 2004 Jul 25; 131(13):3207-16. PubMed ID: 15175245
    [Abstract] [Full Text] [Related]

  • 14. Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice.
    Chen Y, Wang Z, Chen Y, Zhang Y.
    Cell Tissue Res; 2019 May 25; 376(2):199-210. PubMed ID: 30413887
    [Abstract] [Full Text] [Related]

  • 15. The Fibroblast Growth Factor 9 (Fgf9) Participates in Palatogenesis by Promoting Palatal Growth and Elevation.
    Li R, Sun Y, Chen Z, Zheng M, Shan Y, Ying X, Weng M, Chen Z.
    Front Physiol; 2021 May 25; 12():653040. PubMed ID: 33959039
    [Abstract] [Full Text] [Related]

  • 16. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.
    Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV, Jiang R.
    PLoS Genet; 2016 Jan 25; 12(1):e1005769. PubMed ID: 26745863
    [Abstract] [Full Text] [Related]

  • 17. Cooperation of two ADAMTS metalloproteases in closure of the mouse palate identifies a requirement for versican proteolysis in regulating palatal mesenchyme proliferation.
    Enomoto H, Nelson CM, Somerville RP, Mielke K, Dixon LJ, Powell K, Apte SS.
    Development; 2010 Dec 25; 137(23):4029-38. PubMed ID: 21041365
    [Abstract] [Full Text] [Related]

  • 18. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis.
    Wang C, Chang JY, Yang C, Huang Y, Liu J, You P, McKeehan WL, Wang F, Li X.
    J Biol Chem; 2013 Jul 26; 288(30):22174-83. PubMed ID: 23754280
    [Abstract] [Full Text] [Related]

  • 19. Genome-wide Identification of Foxf2 Target Genes in Palate Development.
    Xu J, Liu H, Lan Y, Park JS, Jiang R.
    J Dent Res; 2020 Apr 26; 99(4):463-471. PubMed ID: 32040930
    [Abstract] [Full Text] [Related]

  • 20. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis.
    Zhou J, Gao Y, Lan Y, Jia S, Jiang R.
    Development; 2013 Dec 26; 140(23):4709-18. PubMed ID: 24173808
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.