These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 31511345

  • 1. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence.
    Kauranen H, Kinnunen J, Hiillos AL, Lankinen P, Hopkins D, Wiberg RAW, Ritchie MG, Hoikkala A.
    J Exp Biol; 2019 Oct 17; 222(Pt 20):. PubMed ID: 31511345
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Circadian clock of Drosophila montana is adapted to high variation in summer day lengths and temperatures prevailing at high latitudes.
    Kauranen H, Ala-Honkola O, Kankare M, Hoikkala A.
    J Insect Physiol; 2016 Jun 17; 89():9-18. PubMed ID: 26993661
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Involvement of circadian oscillation(s) in the photoperiodic time measurement and the induction of reproductive diapause in a northern Drosophila species.
    Kauranen H, Tyukmaeva V, Hoikkala A.
    J Insect Physiol; 2013 Jul 17; 59(7):662-6. PubMed ID: 23665332
    [Abstract] [Full Text] [Related]

  • 8. Plasticity in Photoperiodism: Drosophila montana Females Have a Life-Long Ability to Switch From Reproduction to Diapause.
    Lankinen P, Kastally C, Hoikkala A.
    J Biol Rhythms; 2022 Oct 17; 37(5):516-527. PubMed ID: 35924307
    [Abstract] [Full Text] [Related]

  • 9. Clinal variation in the temperature and photoperiodic control of reproductive diapause in Drosophila montana females.
    Lankinen P, Kastally C, Hoikkala A.
    J Insect Physiol; 2023 Nov 17; 150():104556. PubMed ID: 37598869
    [Abstract] [Full Text] [Related]

  • 10. Photoperiodic diapause under the control of circadian clock genes in an insect.
    Ikeno T, Tanaka SI, Numata H, Goto SG.
    BMC Biol; 2010 Sep 03; 8():116. PubMed ID: 20815865
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Distinct Physiological Mechanisms Induce Latitudinal and Sexual Differences in the Photoperiodic Induction of Diapause in a Fly.
    Yamaguchi K, Goto SG.
    J Biol Rhythms; 2019 Jun 03; 34(3):293-306. PubMed ID: 30966851
    [Abstract] [Full Text] [Related]

  • 13. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi.
    Zhu L, Tian Z, Guo S, Liu W, Zhu F, Wang XP.
    Insect Biochem Mol Biol; 2019 Jan 03; 104():1-10. PubMed ID: 30423421
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana.
    Vesala L, Hoikkala A.
    J Insect Physiol; 2011 Jan 03; 57(1):46-51. PubMed ID: 20932841
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.