These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 31512601
1. An In silico approach to identify potential inhibitors against multiple drug targets of Mycobacterium tuberculosis. Kumar S, Sahu P, Jena L. Int J Mycobacteriol; 2019; 8(3):252-261. PubMed ID: 31512601 [Abstract] [Full Text] [Related]
9. In silico analyses for the discovery of tuberculosis drug targets. Chung BK, Dick T, Lee DY. J Antimicrob Chemother; 2013 Dec; 68(12):2701-9. PubMed ID: 23838951 [Abstract] [Full Text] [Related]
12. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. Kurabachew M, Lu SH, Krastel P, Schmitt EK, Suresh BL, Goh A, Knox JE, Ma NL, Jiricek J, Beer D, Cynamon M, Petersen F, Dartois V, Keller T, Dick T, Sambandamurthy VK. J Antimicrob Chemother; 2008 Oct; 62(4):713-9. PubMed ID: 18587134 [Abstract] [Full Text] [Related]
14. Proteome-wide subtractive approach to prioritize a hypothetical protein of XDR-Mycobacterium tuberculosis as potential drug target. Uddin R, Siddiqui QN, Sufian M, Azam SS, Wadood A. Genes Genomics; 2019 Nov; 41(11):1281-1292. PubMed ID: 31388979 [Abstract] [Full Text] [Related]
15. Data Intensive Genome Level Analysis for Identifying Novel, Non-Toxic Drug Targets for Multi Drug Resistant Mycobacterium tuberculosis. Kaur D, Kutum R, Dash D, Brahmachari SK. Sci Rep; 2017 Apr 20; 7():46595. PubMed ID: 28425478 [Abstract] [Full Text] [Related]
16. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Sarker M, Talcott C, Madrid P, Chopra S, Bunin BA, Lamichhane G, Freundlich JS, Ekins S. Pharm Res; 2012 Aug 20; 29(8):2115-27. PubMed ID: 22477069 [Abstract] [Full Text] [Related]
17. Increasing the structural coverage of tuberculosis drug targets. Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ. Tuberculosis (Edinb); 2015 Mar 20; 95(2):142-8. PubMed ID: 25613812 [Abstract] [Full Text] [Related]
18. Genetics-directed drug discovery for combating Mycobacterium tuberculosis infection. Quan Y, Xiong L, Chen J, Zhang HY. J Biomol Struct Dyn; 2017 Feb 20; 35(3):616-621. PubMed ID: 26900080 [Abstract] [Full Text] [Related]
19. Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis. Ma S, Jaipalli S, Larkins-Ford J, Lohmiller J, Aldridge BB, Sherman DR, Chandrasekaran S. mBio; 2019 Nov 12; 10(6):. PubMed ID: 31719182 [Abstract] [Full Text] [Related]