These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 31514444

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen.
    Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S.
    Plant Physiol; 2015 Mar; 167(3):1087-99. PubMed ID: 25624395
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. RNA-Seq analysis of gene expression changes triggered by Xanthomonas oryzae pv. oryzae in a susceptible rice genotype.
    Tariq R, Ji Z, Wang C, Tang Y, Zou L, Sun H, Chen G, Zhao K.
    Rice (N Y); 2019 Jun 24; 12(1):44. PubMed ID: 31236783
    [Abstract] [Full Text] [Related]

  • 26. Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae.
    Tariq R, Wang C, Qin T, Xu F, Tang Y, Gao Y, Ji Z, Zhao K.
    Int J Mol Sci; 2018 Mar 02; 19(3):. PubMed ID: 29498672
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Comparative Transcriptome Analysis of Genes Involved in Sesquiterpene Alkaloid Biosynthesis in Trichoderma longibrachiatum MD33 and UN32.
    Qian X, Jin H, Chen Z, Dai Q, Sarsaiya S, Qin Y, Jia Q, Jin L, Chen J.
    Front Microbiol; 2021 Mar 02; 12():800125. PubMed ID: 34975823
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. [The role of cytochrome P450 in nonalcoholic fatty liver induced by high-fat diet: a gene expression profile analysis].
    Liu Y, Cheng F, Luo YX, Hu P, Ren H, Peng ML.
    Zhonghua Gan Zang Bing Za Zhi; 2017 Apr 20; 25(4):285-290. PubMed ID: 28494548
    [Abstract] [Full Text] [Related]

  • 31. Reengineering lipid biosynthetic pathways of Aspergillus oryzae for enhanced production of γ-linolenic acid and dihomo-γ-linolenic acid.
    Jeennor S, Anantayanon J, Panchanawaporn S, Khoomrung S, Chutrakul C, Laoteng K.
    Gene; 2019 Jul 20; 706():106-114. PubMed ID: 31039437
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B, Hao Y, Lu J, Bai H, Guan L, Zhang T.
    BMC Genomics; 2018 Mar 21; 19(1):213. PubMed ID: 29562889
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, Wang YP.
    BMC Plant Biol; 2019 May 16; 19(1):203. PubMed ID: 31096923
    [Abstract] [Full Text] [Related]

  • 38. Metabolic Regulation of Sugar Assimilation for Lipid Production in Aspergillus oryzae BCC7051 through Comparative Transcriptome Perspective.
    Vorapreeda T, Khongto B, Thammarongtham C, Srisuk T, Laoteng K.
    Biology (Basel); 2021 Sep 08; 10(9):. PubMed ID: 34571762
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.