These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


326 related items for PubMed ID: 31518999

  • 41. Wrist Accelerometry for Physical Activity Measurement in Individuals With Spinal Cord Injury-A Need for Individually Calibrated Cut-Points.
    McCracken LA, Ma JK, Voss C, Chan FH, Martin Ginis KA, West CR.
    Arch Phys Med Rehabil; 2018 Apr; 99(4):684-689. PubMed ID: 29222006
    [Abstract] [Full Text] [Related]

  • 42. Exercise intensity of active video gaming in cerebral palsy: hip- versus wrist-worn accelerometer data.
    Kaya Ciddi P, Yilmaz Ö.
    Dev Neurorehabil; 2022 Oct; 25(7):479-484. PubMed ID: 35815544
    [Abstract] [Full Text] [Related]

  • 43. Comparison of step-count outcomes across seven different activity trackers: a free-living experiment with young and older adults.
    Nakagata T, Yamada Y, Taniguchi M, Nanri H, Kimura M, Miyachi M, Ono R.
    BMC Sports Sci Med Rehabil; 2024 Jul 18; 16(1):156. PubMed ID: 39026366
    [Abstract] [Full Text] [Related]

  • 44. Wrist-based accelerometer cut-points for quantifying moderate-to-vigorous intensity physical activity in Parkinson's disease.
    Jeng B, Cederberg KLJ, Lai B, Sasaki JE, Bamman MM, Motl RW.
    Gait Posture; 2022 Jan 18; 91():235-239. PubMed ID: 34749075
    [Abstract] [Full Text] [Related]

  • 45. Converting between estimates of moderate-to-vigorous physical activity derived from raw accelerations measured at the wrist and from ActiGraph counts measured at the hip: the Rosetta Stone.
    Brazendale K, Beets MW, Rowlands AV, Chandler JL, Fairclough SJ, Boddy LM, Olds TS, Parfitt G, Noonan RJ, Downs SJ, Cliff DP.
    J Sports Sci; 2018 Nov 18; 36(22):2603-2607. PubMed ID: 29708474
    [Abstract] [Full Text] [Related]

  • 46. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children.
    Chandler JL, Brazendale K, Beets MW, Mealing BA.
    Pediatr Obes; 2016 Apr 18; 11(2):120-7. PubMed ID: 25893950
    [Abstract] [Full Text] [Related]

  • 47. Validation of the Vivago Wrist-Worn accelerometer in the assessment of physical activity.
    Vanhelst J, Hurdiel R, Mikulovic J, Bui-Xuân G, Fardy P, Theunynck D, Béghin L.
    BMC Public Health; 2012 Aug 22; 12():690. PubMed ID: 22913286
    [Abstract] [Full Text] [Related]

  • 48. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors.
    Hildebrand M, VAN Hees VT, Hansen BH, Ekelund U.
    Med Sci Sports Exerc; 2014 Sep 22; 46(9):1816-24. PubMed ID: 24887173
    [Abstract] [Full Text] [Related]

  • 49. Validity and comparability of a wrist-worn accelerometer in children.
    Ekblom O, Nyberg G, Bak EE, Ekelund U, Marcus C.
    J Phys Act Health; 2012 Mar 22; 9(3):389-93. PubMed ID: 22454440
    [Abstract] [Full Text] [Related]

  • 50. A comparison of physical activity from Actigraph GT3X+ accelerometers worn on the dominant and non-dominant wrist.
    Buchan DS, McSeveney F, McLellan G.
    Clin Physiol Funct Imaging; 2019 Jan 22; 39(1):51-56. PubMed ID: 30058765
    [Abstract] [Full Text] [Related]

  • 51. Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.
    Tracy DJ, Xu Z, Choi L, Acra S, Chen KY, Buchowski MS.
    PLoS One; 2014 Jan 22; 9(4):e92512. PubMed ID: 24727999
    [Abstract] [Full Text] [Related]

  • 52. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S, Rowlands AV, Murray P, Hurst TL.
    Med Sci Sports Exerc; 2012 Apr 22; 44(4):742-8. PubMed ID: 21988935
    [Abstract] [Full Text] [Related]

  • 53. Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts.
    Brønd JC, Arvidsson D.
    J Appl Physiol (1985); 2016 Feb 01; 120(3):362-9. PubMed ID: 26635347
    [Abstract] [Full Text] [Related]

  • 54. Machine learning for activity recognition: hip versus wrist data.
    Trost SG, Zheng Y, Wong WK.
    Physiol Meas; 2014 Nov 01; 35(11):2183-9. PubMed ID: 25340887
    [Abstract] [Full Text] [Related]

  • 55. Do wearable fitness devices correlate with performance-based tests of work-related functional capacity?
    Karpman J, Gross DP, Manns P, Tomkins-Lane C.
    Work; 2020 Nov 01; 66(1):201-211. PubMed ID: 32417827
    [Abstract] [Full Text] [Related]

  • 56. Raw Accelerometer Data Analysis with GGIR R-package: Does Accelerometer Brand Matter?
    Rowlands AV, Yates T, Davies M, Khunti K, Edwardson CL.
    Med Sci Sports Exerc; 2016 Oct 01; 48(10):1935-41. PubMed ID: 27183118
    [Abstract] [Full Text] [Related]

  • 57. Calibration and Cross-Validation of Accelerometer Cut-Points to Classify Sedentary Time and Physical Activity from Hip and Non-Dominant and Dominant Wrists in Older Adults.
    Migueles JH, Cadenas-Sanchez C, Alcantara JMA, Leal-Martín J, Mañas A, Ara I, Glynn NW, Shiroma EJ.
    Sensors (Basel); 2021 May 11; 21(10):. PubMed ID: 34064790
    [Abstract] [Full Text] [Related]

  • 58. Estimating Sedentary Time from a Hip- and Wrist-Worn Accelerometer.
    Marcotte RT, Petrucci GJ, Cox MF, Freedson PS, Staudenmayer JW, Sirard JR.
    Med Sci Sports Exerc; 2020 Jan 11; 52(1):225-232. PubMed ID: 31343523
    [Abstract] [Full Text] [Related]

  • 59. Feasibility of a Chest-worn accelerometer for physical activity measurement.
    Zhang JH, Macfarlane DJ, Sobko T.
    J Sci Med Sport; 2016 Dec 11; 19(12):1015-1019. PubMed ID: 27017012
    [Abstract] [Full Text] [Related]

  • 60. Accelerometer counts and raw acceleration output in relation to mechanical loading.
    Rowlands AV, Stiles VH.
    J Biomech; 2012 Feb 02; 45(3):448-54. PubMed ID: 22218284
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.