These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The London low emission zone baseline study. Kelly F, Armstrong B, Atkinson R, Anderson HR, Barratt B, Beevers S, Cook D, Green D, Derwent D, Mudway I, Wilkinson P, HEI Health Review Committee. Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [Abstract] [Full Text] [Related]
4. Impacts of Regulations on Air Quality and Emergency Department Visits in the Atlanta Metropolitan Area, 1999-2013. Russell AG, Tolbert P, Henneman L, Abrams J, Liu C, Klein M, Mulholland J, Sarnat SE, Hu Y, Chang HH, Odman T, Strickland MJ, Shen H, Lawal A. Res Rep Health Eff Inst; 2018 Apr; 2018(195):1-93. PubMed ID: 31883240 [Abstract] [Full Text] [Related]
5. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N, Lyu XP, Deng XJ, Guo H, Deng T, Li Y, Yin CQ, Li F, Wang SQ. Sci Total Environ; 2016 Dec 15; 573():1554-1565. PubMed ID: 27642074 [Abstract] [Full Text] [Related]
6. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia. Qiu X, Duan L, Cai S, Yu Q, Wang S, Chai F, Gao J, Li Y, Xu Z. J Environ Sci (China); 2017 Jul 15; 57():383-390. PubMed ID: 28647259 [Abstract] [Full Text] [Related]
7. The Southeastern Aerosol Research and Characterization (SEARCH) study: temporal trends in gas and PM concentrations and composition, 1999-2010. Blanchard CL, Hidy GM, Tanenbaum S, Edgerton ES, Hartsell BE. J Air Waste Manag Assoc; 2013 Mar 15; 63(3):247-59. PubMed ID: 23556235 [Abstract] [Full Text] [Related]
8. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO, Lee SR, HEI Health Review Committee. Res Rep Health Eff Inst; 2014 Jun 15; (179):3-79. PubMed ID: 25145039 [Abstract] [Full Text] [Related]
9. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil. de Miranda RM, Lopes F, do Rosário NÉ, Yamasoe MA, Landulfo E, de Fatima Andrade M. Environ Monit Assess; 2016 Dec 15; 189(1):6. PubMed ID: 27921226 [Abstract] [Full Text] [Related]
10. Source apportionment of PM2.5 for supporting control strategies in the Monterrey Metropolitan Area, Mexico. Martínez-Cinco M, Santos-Guzmán J, Mejía-Velázquez G. J Air Waste Manag Assoc; 2016 Jun 15; 66(6):631-42. PubMed ID: 26950193 [Abstract] [Full Text] [Related]
11. Characteristics of aerosol chemistry and acidity in Shanghai after PM2.5 satisfied national guideline: Insight into future emission control. Fu Z, Cheng L, Ye X, Ma Z, Wang R, Duan Y, Juntao H, Chen J. Sci Total Environ; 2022 Jun 25; 827():154319. PubMed ID: 35257779 [Abstract] [Full Text] [Related]
12. Vital contribution of residential emissions to atmospheric fine particles (PM2.5) during the severe wintertime pollution episodes in Western China. Yang J, Kang S, Ji Z, Yang S, Li C, Tripathee L. Environ Pollut; 2019 Feb 25; 245():519-530. PubMed ID: 30466071 [Abstract] [Full Text] [Related]
13. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F, Anderson HR, Armstrong B, Atkinson R, Barratt B, Beevers S, Derwent D, Green D, Mudway I, Wilkinson P, HEI Health Review Committee. Res Rep Health Eff Inst; 2011 Apr 25; (155):5-71. PubMed ID: 21830496 [Abstract] [Full Text] [Related]
14. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. Tsimpidi AP, Trail M, Hu Y, Nenes A, Russell AG. J Air Waste Manag Assoc; 2012 Oct 25; 62(10):1150-65. PubMed ID: 23155861 [Abstract] [Full Text] [Related]
15. Projected changes in particulate matter concentrations in the South Coast Air Basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds, and ammonia emissions. Stewart DR, Saunders E, Perea R, Fitzgerald R, Campbell DE, Stockwell WR. J Air Waste Manag Assoc; 2019 Feb 25; 69(2):192-208. PubMed ID: 30296386 [Abstract] [Full Text] [Related]
16. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ, Liu Y, HEI Health Review Committee. Res Rep Health Eff Inst; 2012 May 25; (167):5-83; discussion 85-91. PubMed ID: 22838153 [Abstract] [Full Text] [Related]
17. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P, Zhang Y, Yan F, Lu Z, Streets D. Environ Pollut; 2018 Jul 25; 238():918-930. PubMed ID: 29684896 [Abstract] [Full Text] [Related]
18. Ambient PM2.5 organic and elemental carbon in New York City: Changing source contributions during a decade of large emission reductions. Blanchard CL, Shaw SL, Edgerton ES, Schwab JJ. J Air Waste Manag Assoc; 2021 Aug 25; 71(8):995-1012. PubMed ID: 33835900 [Abstract] [Full Text] [Related]
19. WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. de Almeida Albuquerque TT, de Fátima Andrade M, Ynoue RY, Moreira DM, Andreão WL, Dos Santos FS, Nascimento EGS. Environ Sci Pollut Res Int; 2018 Dec 25; 25(36):36555-36569. PubMed ID: 30374719 [Abstract] [Full Text] [Related]
20. Reduction of atmospheric fine particle level by restricting the idling vehicles around a sensitive area. Lee YY, Lin SL, Yuan CS, Lin MY, Chen KS. J Air Waste Manag Assoc; 2018 Jul 25; 68(7):656-670. PubMed ID: 29514014 [Abstract] [Full Text] [Related] Page: [Next] [New Search]