These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


264 related items for PubMed ID: 31521132

  • 1. Identifying protein complexes based on an edge weight algorithm and core-attachment structure.
    Wang R, Liu G, Wang C.
    BMC Bioinformatics; 2019 Sep 14; 20(1):471. PubMed ID: 31521132
    [Abstract] [Full Text] [Related]

  • 2. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B, Liao B.
    Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201
    [Abstract] [Full Text] [Related]

  • 3. Neighbor Affinity-Based Core-Attachment Method to Detect Protein Complexes in Dynamic PPI Networks.
    Lei X, Liang J.
    Molecules; 2017 Jul 24; 22(7):. PubMed ID: 28737728
    [Abstract] [Full Text] [Related]

  • 4. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.
    Peng W, Wang J, Zhao B, Wang L.
    IEEE/ACM Trans Comput Biol Bioinform; 2015 Jul 24; 12(1):179-92. PubMed ID: 26357088
    [Abstract] [Full Text] [Related]

  • 5. Identification of Protein Complexes Based on Core-Attachment Structure and Combination of Centrality Measures and Biological Properties in PPI Weighted Networks.
    Elahi A, Babamir SM.
    Protein J; 2020 Dec 24; 39(6):681-702. PubMed ID: 33040223
    [Abstract] [Full Text] [Related]

  • 6. Predicting overlapping protein complexes based on core-attachment and a local modularity structure.
    Wang R, Liu G, Wang C, Su L, Sun L.
    BMC Bioinformatics; 2018 Aug 22; 19(1):305. PubMed ID: 30134824
    [Abstract] [Full Text] [Related]

  • 7. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.
    Shen X, Yi L, Jiang X, He T, Yang J, Xie W, Hu P, Hu X.
    PLoS One; 2017 Aug 22; 12(10):e0186134. PubMed ID: 29045465
    [Abstract] [Full Text] [Related]

  • 8. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 9. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding.
    Meng X, Xiang J, Zheng R, Wu FX, Li M.
    IEEE/ACM Trans Comput Biol Bioinform; 2022 Dec 01; 19(3):1592-1602. PubMed ID: 33417563
    [Abstract] [Full Text] [Related]

  • 10. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 01; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 11. Identification of protein complexes by integrating multiple alignment of protein interaction networks.
    Ma CY, Chen YP, Berger B, Liao CS.
    Bioinformatics; 2017 Jun 01; 33(11):1681-1688. PubMed ID: 28130237
    [Abstract] [Full Text] [Related]

  • 12. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J, Li C, Ye B, Zhong W.
    BMC Bioinformatics; 2012 Jun 25; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [Abstract] [Full Text] [Related]

  • 13. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 14. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 12; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 15. Detecting protein complexes with multiple properties by an adaptive harmony search algorithm.
    Wang R, Wang C, Ma H.
    BMC Bioinformatics; 2022 Oct 07; 23(1):414. PubMed ID: 36207692
    [Abstract] [Full Text] [Related]

  • 16. Protein complexes detection based on node local properties and gene expression in PPI weighted networks.
    Yu Y, Kong D.
    BMC Bioinformatics; 2022 Jan 06; 23(1):24. PubMed ID: 34991441
    [Abstract] [Full Text] [Related]

  • 17. CACO: A Core-Attachment Method With Cross-Species Functional Ortholog Information to Detect Human Protein Complexes.
    Wang W, Meng X, Xiang J, Shuai Y, Bedru HD, Li M.
    IEEE J Biomed Health Inform; 2023 Sep 06; 27(9):4569-4578. PubMed ID: 37399160
    [Abstract] [Full Text] [Related]

  • 18. Dopcc: Detecting overlapping protein complexes via multi-metrics and co-core attachment method.
    Wang W, Meng X, Xiang J, Bedru HD, Li M.
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul 17; PP():. PubMed ID: 39018215
    [Abstract] [Full Text] [Related]

  • 19. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L, Chan KC.
    BMC Bioinformatics; 2015 May 27; 16():174. PubMed ID: 26013799
    [Abstract] [Full Text] [Related]

  • 20. Impact of low-confidence interactions on computational identification of protein complexes.
    Paul M, Anand A.
    J Bioinform Comput Biol; 2020 Aug 27; 18(4):2050025. PubMed ID: 32757809
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.