These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


410 related items for PubMed ID: 31525866

  • 21. Detection of surface enhanced Raman scattering active hotspot using near field scanning optical microscopy.
    Hossain MK.
    Sci Rep; 2024 May 08; 14(1):10559. PubMed ID: 38719923
    [Abstract] [Full Text] [Related]

  • 22. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma.
    Liyanage T, Masterson AN, Hati S, Ren G, Manicke NE, Rusyniak DE, Sardar R.
    Analyst; 2020 Nov 23; 145(23):7662-7672. PubMed ID: 32969415
    [Abstract] [Full Text] [Related]

  • 23. Transparent, Flexible Plasmonic Ag NP/PMMA Substrates Using Chemically Patterned Ferroelectric Crystals for Detecting Pesticides on Curved Surfaces.
    Wang TJ, Barveen NR, Liu ZY, Chen CH, Chou MH.
    ACS Appl Mater Interfaces; 2021 Jul 28; 13(29):34910-34922. PubMed ID: 34278779
    [Abstract] [Full Text] [Related]

  • 24. Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering.
    Jaiswal A, Tian L, Tadepalli S, Liu KK, Fei M, Farrell ME, Pellegrino PM, Singamaneni S.
    Small; 2014 Nov 12; 10(21):4287-92. PubMed ID: 25045064
    [Abstract] [Full Text] [Related]

  • 25. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N, Ntho TA, Chauke H, Sikhwivhilu L.
    Front Chem; 2022 Nov 12; 10():832282. PubMed ID: 35355787
    [Abstract] [Full Text] [Related]

  • 26. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J, Jang Y, Kim NJ, Kim H, Yi GC, Shin Y, Kim MH, Yoon S.
    Front Chem; 2019 Nov 12; 7():582. PubMed ID: 31482089
    [Abstract] [Full Text] [Related]

  • 27. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH, You MH, Kim GH, Nam JM.
    Nano Lett; 2014 Nov 12; 14(11):6217-25. PubMed ID: 25275930
    [Abstract] [Full Text] [Related]

  • 28. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols.
    Son J, Kim GH, Lee Y, Lee C, Cha S, Nam JM.
    J Am Chem Soc; 2022 Dec 14; 144(49):22337-22351. PubMed ID: 36473154
    [Abstract] [Full Text] [Related]

  • 29. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials.
    Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han X, Lay CL, Sim HYF, Kao YC, An Q, Ling XY.
    Chem Soc Rev; 2019 Feb 04; 48(3):731-756. PubMed ID: 30475351
    [Abstract] [Full Text] [Related]

  • 30. Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots.
    Kusch P, Mastel S, Mueller NS, Morquillas Azpiazu N, Heeg S, Gorbachev R, Schedin F, Hübner U, Pascual JI, Reich S, Hillenbrand R.
    Nano Lett; 2017 Apr 12; 17(4):2667-2673. PubMed ID: 28323430
    [Abstract] [Full Text] [Related]

  • 31. Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method.
    Zhang C, Wang K, Han D, Pang Q.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar 25; 122():387-91. PubMed ID: 24322757
    [Abstract] [Full Text] [Related]

  • 32. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy.
    Lee SH, Kim S, Yang JY, Mun C, Lee S, Kim SH, Park SG.
    Int J Mol Sci; 2022 Jan 17; 23(2):. PubMed ID: 35055189
    [Abstract] [Full Text] [Related]

  • 33. Add-on plasmonic patch as a universal fluorescence enhancer.
    Luan J, Morrissey JJ, Wang Z, Derami HG, Liu KK, Cao S, Jiang Q, Wang C, Kharasch ED, Naik RR, Singamaneni S.
    Light Sci Appl; 2018 Jan 17; 7():29. PubMed ID: 30839611
    [Abstract] [Full Text] [Related]

  • 34. Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering.
    Simo PC, Laible F, Horneber A, Burkhardt CJ, Fleischer M.
    Nanotechnology; 2021 Dec 15; 33(9):. PubMed ID: 34727539
    [Abstract] [Full Text] [Related]

  • 35. Electromagnetic theories of surface-enhanced Raman spectroscopy.
    Ding SY, You EM, Tian ZQ, Moskovits M.
    Chem Soc Rev; 2017 Jul 07; 46(13):4042-4076. PubMed ID: 28660954
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures.
    Liu H, Zhang X, Zhai T, Sander T, Chen L, Klar PJ.
    Nanoscale; 2014 May 21; 6(10):5099-105. PubMed ID: 24728009
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S, Pathak A, Bok S, Chen B, Hamm SC, Mathai CJ, Guha S, Gangopadhyay K, Gangopadhyay S.
    Nanotechnology; 2017 Jan 13; 28(2):025302. PubMed ID: 27905323
    [Abstract] [Full Text] [Related]

  • 40. Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates.
    Lee CH, Tian L, Abbas A, Kattumenu R, Singamaneni S.
    Nanotechnology; 2011 Jul 08; 22(27):275311. PubMed ID: 21613732
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.