These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 31529168
1. Short-interval intracortical inhibition of the biceps brachii in chronic-resistance versus non-resistance-trained individuals. Lahouti B, Lockyer EJ, Wiseman S, Power KE, Button DC. Exp Brain Res; 2019 Nov; 237(11):3023-3032. PubMed ID: 31529168 [Abstract] [Full Text] [Related]
2. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals. Pearcey GE, Power KE, Button DC. PLoS One; 2014 Nov; 9(5):e98468. PubMed ID: 24875495 [Abstract] [Full Text] [Related]
3. Chronic resistance training enhances the spinal excitability of the biceps brachii in the non-dominant arm at moderate contraction intensities. Philpott DT, Pearcey GE, Forman D, Power KE, Button DC. Neurosci Lett; 2015 Jan 12; 585():12-6. PubMed ID: 25445370 [Abstract] [Full Text] [Related]
4. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors. Collins BW, Gale LH, Buckle NCM, Button DC. Physiol Rep; 2017 Apr 12; 5(8):. PubMed ID: 28455452 [Abstract] [Full Text] [Related]
5. Investigating the effects of muscle contraction and conditioning stimulus intensity on short-interval intracortical inhibition. Hendy AM, Ekblom MM, Latella C, Teo WP. Eur J Neurosci; 2019 Oct 12; 50(7):3133-3140. PubMed ID: 31199534 [Abstract] [Full Text] [Related]
6. Training intensity-dependent increases in corticospinal but not intracortical excitability after acute strength training. Colomer-Poveda D, Hortobágyi T, Keller M, Romero-Arenas S, Márquez G. Scand J Med Sci Sports; 2020 Apr 12; 30(4):652-661. PubMed ID: 31785009 [Abstract] [Full Text] [Related]
7. Sex-related differences in corticospinal excitability outcome measures of the biceps brachii during a submaximal elbow flexor contraction. Olarogba OB, Lockyer EJ, Antolinez AK, Button DC. Physiol Rep; 2024 Aug 12; 12(15):e16102. PubMed ID: 39095333 [Abstract] [Full Text] [Related]
8. The short-term recovery of corticomotor responses in elbow flexors. Aboodarda SJ, Fan S, Coates K, Millet GY. BMC Neurosci; 2019 Mar 14; 20(1):9. PubMed ID: 30871475 [Abstract] [Full Text] [Related]
9. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men. Colomer-Poveda D, Romero-Arenas S, Lundbye-Jensen J, Hortobágyi T, Márquez G. J Appl Physiol (1985); 2019 Oct 01; 127(4):1128-1139. PubMed ID: 31436513 [Abstract] [Full Text] [Related]
10. Corticospinal excitability of the biceps brachii is shoulder position dependent. Collins BW, Cadigan EWJ, Stefanelli L, Button DC. J Neurophysiol; 2017 Dec 01; 118(6):3242-3251. PubMed ID: 28855295 [Abstract] [Full Text] [Related]
11. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL. Exp Brain Res; 2016 Sep 01; 234(9):2541-51. PubMed ID: 27165508 [Abstract] [Full Text] [Related]
12. Effects of eccentric versus concentric contractions of the biceps brachii on intracortical inhibition and facilitation. Latella C, Goodwill AM, Muthalib M, Hendy AM, Major B, Nosaka K, Teo WP. Scand J Med Sci Sports; 2019 Mar 01; 29(3):369-379. PubMed ID: 30403428 [Abstract] [Full Text] [Related]
13. Effects of volitional contraction on intracortical inhibition and facilitation in the human motor cortex. Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC. J Physiol; 2008 Nov 01; 586(21):5147-59. PubMed ID: 18787036 [Abstract] [Full Text] [Related]
14. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Aboodarda SJ, Šambaher N, Millet GY, Behm DG. Neuroscience; 2017 Jan 06; 340():477-486. PubMed ID: 27826108 [Abstract] [Full Text] [Related]
17. Heavy-resistance exercise-induced increases in jump performance are not explained by changes in neuromuscular function. Thomas K, Toward A, West DJ, Howatson G, Goodall S. Scand J Med Sci Sports; 2017 Jan 06; 27(1):35-44. PubMed ID: 26639349 [Abstract] [Full Text] [Related]
18. Motor cortical and corticospinal function differ during an isometric squat compared with isometric knee extension. Brownstein CG, Ansdell P, Škarabot J, Frazer A, Kidgell D, Howatson G, Goodall S, Thomas K. Exp Physiol; 2018 Sep 06; 103(9):1251-1263. PubMed ID: 29928769 [Abstract] [Full Text] [Related]
19. Chronic neural adaptation induced by long-term resistance training in humans. del Olmo MF, Reimunde P, Viana O, Acero RM, Cudeiro J. Eur J Appl Physiol; 2006 Apr 06; 96(6):722-8. PubMed ID: 16506058 [Abstract] [Full Text] [Related]
20. Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males. Aboodarda SJ, Copithorne DB, Pearcey GEP, Button DC, Power KE. Neurosci Lett; 2015 Oct 21; 607():66-71. PubMed ID: 26415709 [Abstract] [Full Text] [Related] Page: [Next] [New Search]