These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


304 related items for PubMed ID: 31534277

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based on Multiple Machine Learning Algorithms.
    Fu P, Meacham-Hensold K, Guan K, Bernacchi CJ.
    Front Plant Sci; 2019; 10():730. PubMed ID: 31214235
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression.
    Fu P, Meacham-Hensold K, Guan K, Wu J, Bernacchi C.
    Plant Cell Environ; 2020 May; 43(5):1241-1258. PubMed ID: 31922609
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy.
    Wang S, Guan K, Wang Z, Ainsworth EA, Zheng T, Townsend PA, Li K, Moller C, Wu G, Jiang C.
    J Exp Bot; 2021 Feb 02; 72(2):341-354. PubMed ID: 32937655
    [Abstract] [Full Text] [Related]

  • 7. Selecting informative bands for partial least squares regressions improves their goodness-of-fits to estimate leaf photosynthetic parameters from hyperspectral data.
    Jin J, Wang Q, Song G.
    Photosynth Res; 2022 Jan 02; 151(1):71-82. PubMed ID: 34491493
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging.
    Meacham-Hensold K, Fu P, Wu J, Serbin S, Montes CM, Ainsworth E, Guan K, Dracup E, Pederson T, Driever S, Bernacchi C.
    J Exp Bot; 2020 Apr 06; 71(7):2312-2328. PubMed ID: 32092145
    [Abstract] [Full Text] [Related]

  • 10. Estimating Photosynthetic Attributes from High-Throughput Canopy Hyperspectral Sensing in Sorghum.
    Zhi X, Massey-Reed SR, Wu A, Potgieter A, Borrell A, Hunt C, Jordan D, Zhao Y, Chapman S, Hammer G, George-Jaeggli B.
    Plant Phenomics; 2022 Apr 06; 2022():9768502. PubMed ID: 35498954
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data.
    Barnes ML, Breshears DD, Law DJ, van Leeuwen WJD, Monson RK, Fojtik AC, Barron-Gafford GA, Moore DJP.
    PLoS One; 2017 Apr 06; 12(12):e0189539. PubMed ID: 29281709
    [Abstract] [Full Text] [Related]

  • 14. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature.
    Serbin SP, Dillaway DN, Kruger EL, Townsend PA.
    J Exp Bot; 2012 Jan 06; 63(1):489-502. PubMed ID: 21984647
    [Abstract] [Full Text] [Related]

  • 15. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression.
    Burnett AC, Anderson J, Davidson KJ, Ely KS, Lamour J, Li Q, Morrison BD, Yang D, Rogers A, Serbin SP.
    J Exp Bot; 2021 Sep 30; 72(18):6175-6189. PubMed ID: 34131723
    [Abstract] [Full Text] [Related]

  • 16. Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models.
    Buchaillot ML, Soba D, Shu T, Liu J, Aranjuelo I, Araus JL, Runion GB, Prior SA, Kefauver SC, Sanz-Saez A.
    Planta; 2022 Mar 24; 255(4):93. PubMed ID: 35325309
    [Abstract] [Full Text] [Related]

  • 17. Predicting photosynthetic capacity in tobacco using shortwave infrared spectral reflectance.
    Sexton T, Sankaran S, Cousins AB.
    J Exp Bot; 2021 May 28; 72(12):4373-4383. PubMed ID: 33735372
    [Abstract] [Full Text] [Related]

  • 18. Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning.
    Furbank RT, Silva-Perez V, Evans JR, Condon AG, Estavillo GM, He W, Newman S, Poiré R, Hall A, He Z.
    Plant Methods; 2021 Oct 19; 17(1):108. PubMed ID: 34666801
    [Abstract] [Full Text] [Related]

  • 19. Rapid estimation of photosynthetic leaf traits of tropical plants in diverse environmental conditions using reflectance spectroscopy.
    Lamour J, Davidson KJ, Ely KS, Anderson JA, Rogers A, Wu J, Serbin SP.
    PLoS One; 2021 Oct 19; 16(10):e0258791. PubMed ID: 34665822
    [Abstract] [Full Text] [Related]

  • 20. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat.
    Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR.
    J Exp Bot; 2018 Jan 23; 69(3):483-496. PubMed ID: 29309611
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.