These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 31537492

  • 1. From accelerometer output to physical activity intensities in breast cancer patients.
    Sweegers MG, Buffart LM, Huijsmans RJ, Konings IR, van Zweeden AA, Brug J, Chinapaw MJM, Altenburg TM.
    J Sci Med Sport; 2020 Feb; 23(2):176-181. PubMed ID: 31537492
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Estimation of physical activity intensity cut-points using accelerometry in breast cancer survivors and age-matched controls.
    Trinh L, Motl RW, Roberts SA, Gibbons T, McAuley E.
    Eur J Cancer Care (Engl); 2019 Sep; 28(5):e13090. PubMed ID: 31106924
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Estimating relative intensity using individualized accelerometer cutpoints: the importance of fitness level.
    Ozemek C, Cochran HL, Strath SJ, Byun W, Kaminsky LA.
    BMC Med Res Methodol; 2013 Apr 01; 13():53. PubMed ID: 23547769
    [Abstract] [Full Text] [Related]

  • 8. Do moderate- to vigorous-intensity accelerometer count thresholds correspond to relative moderate- to vigorous-intensity physical activity?
    Raiber L, Christensen RAG, Randhawa AK, Jamnik VK, Kuk JL.
    Appl Physiol Nutr Metab; 2019 Apr 01; 44(4):407-413. PubMed ID: 30248278
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N, Cabrera-Diego LA, Campbell D, Sanders G, Fairclough SJ, Korkontzelos I.
    Comput Methods Programs Biomed; 2021 Sep 01; 208():106165. PubMed ID: 34118492
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Validating accelerometry as a measure of physical activity and energy expenditure in chronic stroke.
    Serra MC, Balraj E, DiSanzo BL, Ivey FM, Hafer-Macko CE, Treuth MS, Ryan AS.
    Top Stroke Rehabil; 2017 Jan 01; 24(1):18-23. PubMed ID: 27322733
    [Abstract] [Full Text] [Related]

  • 15. Individualized Estimation of Physical Activity in Older Adults with Type 2 Diabetes.
    Welch WA, Alexander NB, Swartz AM, Miller NE, Twardzik E, Strath SJ.
    Med Sci Sports Exerc; 2017 Nov 01; 49(11):2185-2190. PubMed ID: 28640060
    [Abstract] [Full Text] [Related]

  • 16. Individualized Accelerometer Activity Cut-Points for the Measurement of Relative Physical Activity Intensity Levels.
    Gil-Rey E, Maldonado-Martín S, Gorostiaga EM.
    Res Q Exerc Sport; 2019 Sep 01; 90(3):327-335. PubMed ID: 31058588
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Accelerometer output and its association with energy expenditure in persons with multiple sclerosis.
    Sandroff BM, Motl RW, Suh Y.
    J Rehabil Res Dev; 2012 Sep 01; 49(3):467-75. PubMed ID: 22773205
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Validation of Cut-Points for Evaluating the Intensity of Physical Activity with Accelerometry-Based Mean Amplitude Deviation (MAD).
    Vähä-Ypyä H, Vasankari T, Husu P, Mänttäri A, Vuorimaa T, Suni J, Sievänen H.
    PLoS One; 2015 Sep 01; 10(8):e0134813. PubMed ID: 26292225
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.