These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


275 related items for PubMed ID: 31545199

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material.
    Zhang T, Li Z, Wang W, Wang Y, Gao B, Wang Z.
    J Colloid Interface Sci; 2019 Mar 01; 537():1-10. PubMed ID: 30414503
    [Abstract] [Full Text] [Related]

  • 3. Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications.
    Araújo CM, das Virgens Santana M, do Nascimento Cavalcante A, Nunes LCC, Bertolino LC, de Sousa Brito CAR, Barreto HM, Eiras C.
    Mater Sci Eng C Mater Biol Appl; 2020 Oct 01; 115():110927. PubMed ID: 32600678
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Incorporating Ag@RF core-shell nanomaterials into the thin film nanocomposite membrane to improve permeability and long-term antibacterial properties for nanofiltration.
    Tong Y, Wang Y, Bian S, Ge H, Xiao F, Li L, Gao C, Zhu G.
    Sci Total Environ; 2022 Sep 15; 839():156231. PubMed ID: 35643139
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable.
    Shakeri A, Salehi H, Ghorbani F, Amini M, Naslhajian H.
    J Colloid Interface Sci; 2019 Feb 15; 536():328-338. PubMed ID: 30380432
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Hydrophilic Silver Nanoparticles Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes.
    Yang Z, Guo H, Yao ZK, Mei Y, Tang CY.
    Environ Sci Technol; 2019 May 07; 53(9):5301-5308. PubMed ID: 30973224
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes.
    Zhang M, Zhang K, De Gusseme B, Verstraete W.
    Water Res; 2012 May 01; 46(7):2077-87. PubMed ID: 22330259
    [Abstract] [Full Text] [Related]

  • 17. A novel strategy to develop antifouling and antibacterial conductive Cu/polydopamine/polyvinylidene fluoride membranes for water treatment.
    Li R, Wu Y, Shen L, Chen J, Lin H.
    J Colloid Interface Sci; 2018 Dec 01; 531():493-501. PubMed ID: 30055444
    [Abstract] [Full Text] [Related]

  • 18. Incorporation of quaternary ammonium chitooligosaccharides on ZnO/palygorskite nanocomposites for enhancing antibacterial activities.
    Hui A, Yan R, Wang W, Wang Q, Zhou Y, Wang A.
    Carbohydr Polym; 2020 Nov 01; 247():116685. PubMed ID: 32829813
    [Abstract] [Full Text] [Related]

  • 19. The antibacterial activity of ceramsite coated by silver nanoparticles in micropore.
    Qiu S, Huang X, Xu S, Ma F.
    Appl Biochem Biotechnol; 2015 May 01; 176(1):267-76. PubMed ID: 25820386
    [Abstract] [Full Text] [Related]

  • 20. In Situ Reduction of Silver by Polydopamine: A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane.
    Yang Z, Wu Y, Wang J, Cao B, Tang CY.
    Environ Sci Technol; 2016 Sep 06; 50(17):9543-50. PubMed ID: 27479138
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.