These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


539 related items for PubMed ID: 31553209

  • 1. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL, Miles DB.
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [Abstract] [Full Text] [Related]

  • 2. Behavioral plasticity during acute heat stress: heat hardening increases the expression of boldness.
    Goerge TM, Miles DB.
    J Therm Biol; 2024 Jan; 119():103778. PubMed ID: 38171068
    [Abstract] [Full Text] [Related]

  • 3. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity.
    van Heerwaarden B, Sgrò C, Kellermann VM.
    Proc Biol Sci; 2024 Feb 14; 291(2016):20232700. PubMed ID: 38320612
    [Abstract] [Full Text] [Related]

  • 4. Thermal physiology responds to interannual temperature shifts in a montane horned lizard, Phrynosoma orbiculare.
    Domínguez-Guerrero SF, Bodensteiner BL, Pardo-Ramírez A, Aguillón-Gutierrez DR, Méndez-de la Cruz FR, Muñoz MM.
    J Exp Zool A Ecol Integr Physiol; 2021 Jan 14; 335(1):136-145. PubMed ID: 32767500
    [Abstract] [Full Text] [Related]

  • 5. Heat hardening of a larval amphibian is dependent on acclimation period and temperature.
    Dallas J, Warne RW.
    J Exp Zool A Ecol Integr Physiol; 2023 May 14; 339(4):339-345. PubMed ID: 36811331
    [Abstract] [Full Text] [Related]

  • 6. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL, Fernández JB, Ibargüengoytía NR.
    J Comp Physiol B; 2016 Feb 14; 186(2):243-53. PubMed ID: 26679700
    [Abstract] [Full Text] [Related]

  • 7. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR, Eller OC, Hahn DA, Morgan TJ.
    Proc Natl Acad Sci U S A; 2015 Apr 07; 112(14):4399-404. PubMed ID: 25805817
    [Abstract] [Full Text] [Related]

  • 8. Rapid heat hardening in embryos of the lizard Anolis sagrei.
    Gleason GS, Starr K, Sanger TJ, Gunderson AR.
    Biol Lett; 2023 Jul 07; 19(7):20230174. PubMed ID: 37433329
    [Abstract] [Full Text] [Related]

  • 9. Heat hardening in a pair of Anolis lizards: constraints, dynamics and ecological consequences.
    Deery SW, Rej JE, Haro D, Gunderson AR.
    J Exp Biol; 2021 Apr 06; 224(Pt 7):. PubMed ID: 33653724
    [Abstract] [Full Text] [Related]

  • 10. Heat hardening in a pair of Anolis lizards: constraints, dynamics and ecological consequences.
    Deery SW, Rej JE, Haro D, Gunderson AR.
    J Exp Biol; 2021 Apr 01; 224(7):. PubMed ID: 34424976
    [Abstract] [Full Text] [Related]

  • 11. Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus.
    Artacho P, Saravia J, Perret S, Bartheld JL, Le Galliard JF.
    J Therm Biol; 2017 Jan 01; 63():78-87. PubMed ID: 28010818
    [Abstract] [Full Text] [Related]

  • 12. Thermal tolerance plasticity and dynamics of thermal tolerance in Eublepharis macularius: Implications for future climate-driven heat stress.
    White E, Kim S, Wegh G, Chiari Y.
    J Therm Biol; 2024 Jul 01; 123():103912. PubMed ID: 39024848
    [Abstract] [Full Text] [Related]

  • 13. Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population.
    Domínguez-Guerrero SF, Muñoz MM, Pasten-Téllez DJ, Arenas-Moreno DM, Rodríguez-Miranda LA, Manríquez-Morán NL, Méndez-de la Cruz FR.
    J Therm Biol; 2019 Jan 01; 79():135-143. PubMed ID: 30612673
    [Abstract] [Full Text] [Related]

  • 14. Rapid induction of the heat hardening response in an Arctic insect.
    Sørensen MH, Kristensen TN, Lauritzen JMS, Noer NK, Høye TT, Bahrndorff S.
    Biol Lett; 2019 Oct 31; 15(10):20190613. PubMed ID: 31615371
    [Abstract] [Full Text] [Related]

  • 15. Drop it like it's hot: Interpopulation variation in thermal phenotypes shows counter-gradient pattern.
    Hodgson MJ, Schwanz LE.
    J Therm Biol; 2019 Jul 31; 83():178-186. PubMed ID: 31331517
    [Abstract] [Full Text] [Related]

  • 16. Univariate and multivariate plasticity in response to incubation temperature in an Australian lizard.
    de Jong MJ, White CR, Wong BBM, Chapple DG.
    J Exp Biol; 2022 Nov 15; 225(22):. PubMed ID: 36354342
    [Abstract] [Full Text] [Related]

  • 17. Season-sex interaction induces changes in the ecophysiological traits of a lizard in a high altitude cold desert, Puna region.
    Gómez Alés R, Acosta JC, Astudillo V, Córdoba M.
    J Therm Biol; 2022 Jan 15; 103():103152. PubMed ID: 35027202
    [Abstract] [Full Text] [Related]

  • 18. Higher incubation temperatures produce long-lasting upward shifts in cold tolerance, but not heat tolerance, of hatchling geckos.
    Abayarathna T, Murray BR, Webb JK.
    Biol Open; 2019 Apr 18; 8(4):. PubMed ID: 31000681
    [Abstract] [Full Text] [Related]

  • 19. Plasticity of cold and heat stress tolerance induced by hardening and acclimation in the melon thrips.
    Cao HQ, Chen JC, Tang MQ, Chen M, Hoffmann AA, Wei SJ.
    J Insect Physiol; 2024 Mar 18; 153():104619. PubMed ID: 38301801
    [Abstract] [Full Text] [Related]

  • 20. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change?
    ObregÓn RL, Scolaro JA, IbargÜengoytÍa NR, Medina M.
    Integr Zool; 2021 Jan 18; 16(1):53-66. PubMed ID: 32822078
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.