These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
415 related items for PubMed ID: 31554307
1. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Fu L, Ding Z, Sun X, Zhang J. Genes (Basel); 2019 Sep 24; 10(10):. PubMed ID: 31554307 [Abstract] [Full Text] [Related]
2. Genome-wide discovery and functional prediction of salt-responsive lncRNAs in duckweed. Fu L, Ding Z, Tan D, Han B, Sun X, Zhang J. BMC Genomics; 2020 Mar 05; 21(1):212. PubMed ID: 32138656 [Abstract] [Full Text] [Related]
3. Na+/K+ Balance and Transport Regulatory Mechanisms in Weedy and Cultivated Rice (Oryza sativa L.) Under Salt Stress. Zhang Y, Fang J, Wu X, Dong L. BMC Plant Biol; 2018 Dec 29; 18(1):375. PubMed ID: 30594151 [Abstract] [Full Text] [Related]
4. Calcium-induced proline accumulation contributes to amelioration of NaCl injury and expression of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.). Cheng TS, Hung MJ, Cheng YI, Cheng LJ. Aquat Toxicol; 2013 Nov 15; 144-145():265-74. PubMed ID: 24200992 [Abstract] [Full Text] [Related]
5. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. Wang W, Wu Y, Messing J. BMC Genomics; 2014 Jan 23; 15():60. PubMed ID: 24456086 [Abstract] [Full Text] [Related]
6. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). Wang W, Messing J. BMC Plant Biol; 2012 Jan 11; 12():5. PubMed ID: 22235974 [Abstract] [Full Text] [Related]
7. Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (Vitis vinifera L.) in Response to Salt Stress. Guan L, Haider MS, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J. Int J Mol Sci; 2018 Dec 12; 19(12):. PubMed ID: 30545146 [Abstract] [Full Text] [Related]
8. The complete chloroplast genome of greater duckweed (Spirodela polyrhiza 7498) using PacBio long reads: insights into the chloroplast evolution and transcription regulation. Zhang Y, An D, Li C, Zhao Z, Wang W. BMC Genomics; 2020 Jan 28; 21(1):76. PubMed ID: 31992185 [Abstract] [Full Text] [Related]
9. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production. Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK. Plant Biol (Stuttg); 2018 Mar 28; 20(2):357-364. PubMed ID: 29222918 [Abstract] [Full Text] [Related]
10. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Mol Plant Microbe Interact; 2022 Jan 28; 35(1):28-38. PubMed ID: 34622686 [Abstract] [Full Text] [Related]
11. Transcriptional analysis of renal dopamine-mediated Na+ homeostasis response to environmental salinity stress in Scatophagus argus. Su M, Zhou J, Duan Z, Zhang J. BMC Genomics; 2019 May 24; 20(1):418. PubMed ID: 31126236 [Abstract] [Full Text] [Related]
12. Genome-Wide Identification and Functional Characterization of the Cation Proton Antiporter (CPA) Family Related to Salt Stress Response in Radish (Raphanus sativus L.). Wang Y, Ying J, Zhang Y, Xu L, Zhang W, Ni M, Zhu Y, Liu L. Int J Mol Sci; 2020 Nov 04; 21(21):. PubMed ID: 33158201 [Abstract] [Full Text] [Related]
13. Transcriptome analysis of gene expression in Chlorella vulgaris under salt stress. Abdellaoui N, Kim MJ, Choi TJ. World J Microbiol Biotechnol; 2019 Aug 28; 35(9):141. PubMed ID: 31463611 [Abstract] [Full Text] [Related]
14. Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II. Borkiewicz L, Polkowska-Kowalczyk L, Cieśla J, Sowiński P, Jończyk M, Rymaszewski W, Szymańska KP, Jaźwiec R, Muszyńska G, Szczegielniak J. Physiol Plant; 2020 Jan 28; 168(1):38-57. PubMed ID: 30714160 [Abstract] [Full Text] [Related]
15. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. Çakır Aydemir B, Yüksel Özmen C, Kibar U, Mutaf F, Büyük PB, Bakır M, Ergül A. PLoS One; 2020 Jan 28; 15(7):e0236424. PubMed ID: 32730292 [Abstract] [Full Text] [Related]
16. Identification, Phylogeny, and Comparative Expression of the Lipoxygenase Gene Family of the Aquatic Duckweed, Spirodela polyrhiza, during Growth and in Response to Methyl Jasmonate and Salt. Upadhyay RK, Edelman M, Mattoo AK. Int J Mol Sci; 2020 Dec 15; 21(24):. PubMed ID: 33333747 [Abstract] [Full Text] [Related]
17. Transcriptomics and physiology reveal the mechanism of potassium indole-3-butyrate (IBAK) mediating rice resistance to salt stress. Zhou H, Liu M, Meng F, Zheng D, Feng N. BMC Plant Biol; 2023 Nov 16; 23(1):569. PubMed ID: 37968598 [Abstract] [Full Text] [Related]
18. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W. Plant Cell Environ; 2015 Dec 16; 38(12):2766-79. PubMed ID: 26046379 [Abstract] [Full Text] [Related]
19. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Zhu Y, Yin J, Liang Y, Liu J, Jia J, Huo H, Wu Z, Yang R, Gong H. Ecotoxicol Environ Saf; 2019 Jun 15; 174():245-254. PubMed ID: 30831473 [Abstract] [Full Text] [Related]
20. Gene Coexpression Network Analysis Indicates that Hub Genes Related to Photosynthesis and Starch Synthesis Modulate Salt Stress Tolerance in Ulmus pumila. Chen P, Liu P, Zhang Q, Bu C, Lu C, Srivastava S, Zhang D, Song Y. Int J Mol Sci; 2021 Apr 23; 22(9):. PubMed ID: 33922506 [Abstract] [Full Text] [Related] Page: [Next] [New Search]