These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 31558350

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. RIM-Binding Protein 2 Organizes Ca2+ Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse.
    Butola T, Alvanos T, Hintze A, Koppensteiner P, Kleindienst D, Shigemoto R, Wichmann C, Moser T.
    J Neurosci; 2021 Sep 15; 41(37):7742-7767. PubMed ID: 34353898
    [Abstract] [Full Text] [Related]

  • 3. Ca2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity.
    Medeiros AT, Gratz SJ, Delgado A, Ritt JT, O'Connor-Giles KM.
    Elife; 2024 Sep 18; 12():. PubMed ID: 39291956
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Spontaneous Vesicle Release Is Not Tightly Coupled to Voltage-Gated Calcium Channel-Mediated Ca2+ Influx and Is Triggered by a Ca2+ Sensor Other Than Synaptotagmin-2 at the Juvenile Mice Calyx of Held Synapses.
    Dai J, Chen P, Tian H, Sun J.
    J Neurosci; 2015 Jul 01; 35(26):9632-7. PubMed ID: 26134646
    [Abstract] [Full Text] [Related]

  • 7. Variations in Ca2+ Influx Can Alter Chelator-Based Estimates of Ca2+ Channel-Synaptic Vesicle Coupling Distance.
    Nakamura Y, Reva M, DiGregorio DA.
    J Neurosci; 2018 Apr 18; 38(16):3971-3987. PubMed ID: 29563180
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. RIM and RIM-Binding Protein Localize Synaptic CaV2 Channels to Differentially Regulate Transmission in Neuronal Circuits.
    Jánosi B, Liewald JF, Seidenthal M, Yu SC, Umbach S, Redzovic J, Rentsch D, Alcantara IC, Bergs ACF, Schneider MW, Shao J, Gottschalk A.
    J Neurosci; 2024 Jul 31; 44(31):. PubMed ID: 38951038
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Nanoscale distribution of presynaptic Ca(2+) channels and its impact on vesicular release during development.
    Nakamura Y, Harada H, Kamasawa N, Matsui K, Rothman JS, Shigemoto R, Silver RA, DiGregorio DA, Takahashi T.
    Neuron; 2015 Jan 07; 85(1):145-158. PubMed ID: 25533484
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Voltage-gated calcium channels contribute to spontaneous glutamate release directly via nanodomain coupling or indirectly via calmodulin.
    Lee BJ, Yang CH, Lee SY, Lee SH, Kim Y, Ho WK.
    Prog Neurobiol; 2022 Jan 07; 208():102182. PubMed ID: 34695543
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Impact of spatiotemporal calcium dynamics within presynaptic active zones on synaptic delay at the frog neuromuscular junction.
    Homan AE, Laghaei R, Dittrich M, Meriney SD.
    J Neurophysiol; 2018 Feb 01; 119(2):688-699. PubMed ID: 29167324
    [Abstract] [Full Text] [Related]

  • 16. The active-zone protein Munc13 controls the use-dependence of presynaptic voltage-gated calcium channels.
    Calloway N, Gouzer G, Xue M, Ryan TA.
    Elife; 2015 Jul 21; 4():. PubMed ID: 26196145
    [Abstract] [Full Text] [Related]

  • 17. Developmental transformation of the release modality at the calyx of Held synapse.
    Fedchyshyn MJ, Wang LY.
    J Neurosci; 2005 Apr 20; 25(16):4131-40. PubMed ID: 15843616
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.