These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 31562541
1. LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R. Planta; 2019 Nov; 250(5):1781-1787. PubMed ID: 31562541 [Abstract] [Full Text] [Related]
2. Hybridization and polyploidization effects on LTR-retrotransposon activation in potato genome. Gantuz M, Morales A, Bertoldi MV, Ibañez VN, Duarte PF, Marfil CF, Masuelli RW. J Plant Res; 2022 Jan; 135(1):81-92. PubMed ID: 34674075 [Abstract] [Full Text] [Related]
3. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV. Genetica; 2017 Oct; 145(4-5):417-430. PubMed ID: 28776161 [Abstract] [Full Text] [Related]
4. Dicer-like and RNA-dependent RNA polymerase gene family identification and annotation in the cultivated Solanum tuberosum and its wild relative S. commersonii. Esposito S, Aversano R, D'Amelia V, Villano C, Alioto D, Mirouze M, Carputo D. Planta; 2018 Sep; 248(3):729-743. PubMed ID: 29948127 [Abstract] [Full Text] [Related]
5. High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D, Tabares-Soto R, Guyot R. Genome; 2023 Mar 01; 66(3):51-61. PubMed ID: 36623262 [Abstract] [Full Text] [Related]
6. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. Qiu F, Ungerer MC. BMC Plant Biol; 2018 Jan 05; 18(1):6. PubMed ID: 29304730 [Abstract] [Full Text] [Related]
7. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. Thomas-Bulle C, Piednoël M, Donnart T, Filée J, Jollivet D, Bonnivard É. BMC Genomics; 2018 Nov 15; 19(1):821. PubMed ID: 30442098 [Abstract] [Full Text] [Related]
8. The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives. Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, Xumerle L, Dal Molin A, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Cigliano RA, Capella-Gutierrez S, Gabaldón T, Frusciante L, Bradeen JM, Carputo D. Plant Cell; 2015 Apr 15; 27(4):954-68. PubMed ID: 25873387 [Abstract] [Full Text] [Related]
9. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, Mascagni F, Giordani T. BMC Plant Biol; 2021 May 17; 21(1):221. PubMed ID: 34000996 [Abstract] [Full Text] [Related]
10. Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. Domingues DS, Cruz GM, Metcalfe CJ, Nogueira FT, Vicentini R, Alves Cde S, Van Sluys MA. BMC Genomics; 2012 Apr 16; 13():137. PubMed ID: 22507400 [Abstract] [Full Text] [Related]
11. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum. Cho KS, Cheon KS, Hong SY, Cho JH, Im JS, Mekapogu M, Yu YS, Park TH. Plant Cell Rep; 2016 Oct 16; 35(10):2113-23. PubMed ID: 27417695 [Abstract] [Full Text] [Related]
12. Genomic re-assessment of the transposable element landscape of the potato genome. Zavallo D, Crescente JM, Gantuz M, Leone M, Vanzetti LS, Masuelli RW, Asurmendi S. Plant Cell Rep; 2020 Sep 16; 39(9):1161-1174. PubMed ID: 32435866 [Abstract] [Full Text] [Related]
13. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. da Costa ZP, Cauz-Santos LA, Ragagnin GT, Van Sluys MA, Dornelas MC, Berges H, de Mello Varani A, Vieira MLC. Mol Biol Rep; 2019 Dec 16; 46(6):6117-6133. PubMed ID: 31549373 [Abstract] [Full Text] [Related]
14. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species. Ma B, Kuang L, Xin Y, He N. Genes (Basel); 2019 Apr 09; 10(4):. PubMed ID: 30970574 [Abstract] [Full Text] [Related]
15. Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Gaiero P, Vaio M, Peters SA, Schranz ME, de Jong H, Speranza PR. Ann Bot; 2019 Feb 15; 123(3):521-532. PubMed ID: 30346473 [Abstract] [Full Text] [Related]
16. TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato. Yin H, Liu J, Xu Y, Liu X, Zhang S, Ma J, Du J. PLoS One; 2013 Feb 15; 8(7):e68587. PubMed ID: 23861922 [Abstract] [Full Text] [Related]
17. Co-evolution of plant LTR-retrotransposons and their host genomes. Zhao M, Ma J. Protein Cell; 2013 Jul 15; 4(7):493-501. PubMed ID: 23794032 [Abstract] [Full Text] [Related]
18. The landscape and structural diversity of LTR retrotransposons in Musa genome. Nouroz F, Noreen S, Ahmad H, Heslop-Harrison JSP. Mol Genet Genomics; 2017 Oct 15; 292(5):1051-1067. PubMed ID: 28601922 [Abstract] [Full Text] [Related]
19. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. de Souza TB, Chaluvadi SR, Johnen L, Marques A, González-Elizondo MS, Bennetzen JL, Vanzela ALL. Ann Bot; 2018 Aug 01; 122(2):279-290. PubMed ID: 30084890 [Abstract] [Full Text] [Related]
20. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. Yang LL, Zhang XY, Wang LY, Li YG, Li XT, Yang Y, Su Q, Chen N, Zhang YL, Li N, Deng CL, Li SF, Gao WJ. BMC Genomics; 2023 Jul 27; 24(1):423. PubMed ID: 37501164 [Abstract] [Full Text] [Related] Page: [Next] [New Search]