These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 31565529
1. Specialized source-detector separations in near-infrared reflectance spectroscopy platform enable effective separation of diffusion and absorption for glucose sensing. Liu J, Han T, Jiang J, Xu K. Biomed Opt Express; 2019 Sep 01; 10(9):4839-4858. PubMed ID: 31565529 [Abstract] [Full Text] [Related]
2. Scattering-independent glucose absorption measurement using a spectrally resolved reflectance setup with specialized variable source-detector separations. Liu J, Zhu C, Jiang J, Xu K. Biomed Opt Express; 2018 Dec 01; 9(12):5903-5914. PubMed ID: 31065402 [Abstract] [Full Text] [Related]
4. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy. Chen YW, Guo JY, Tzeng SY, Chou TC, Lin MJ, Huang LL, Yang CC, Hsu CK, Tseng SH. Biomed Opt Express; 2016 Feb 01; 7(2):542-58. PubMed ID: 26977361 [Abstract] [Full Text] [Related]
5. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties. Chen YW, Tseng SH. Biomed Opt Express; 2015 Mar 01; 6(3):747-60. PubMed ID: 25798300 [Abstract] [Full Text] [Related]
6. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation. Chen YW, Chen CC, Huang PJ, Tseng SH. Biomed Opt Express; 2016 Apr 01; 7(4):1496-510. PubMed ID: 27446671 [Abstract] [Full Text] [Related]
7. Effects of capsule on surface diffuse reflectance spectroscopy of the subcapsular parenchyma of a solid organ. Piao D, Borron H, Hawxby A, Wright H, Rubin EM. J Biomed Opt; 2018 Jul 01; 23(12):1-23. PubMed ID: 30054997 [Abstract] [Full Text] [Related]
8. Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements. Grabtchak S, Whelan WM. Biomed Opt Express; 2012 Oct 01; 3(10):2371-80. PubMed ID: 23082279 [Abstract] [Full Text] [Related]
9. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. Wang L, Jacques SL. J Opt Soc Am A Opt Image Sci Vis; 1993 Aug 01; 10(8):1746-52. PubMed ID: 8350159 [Abstract] [Full Text] [Related]
10. Joint derivation method for determining optical properties based on steady-state spatially resolved diffuse reflectance measurement at small source-detector separations and large reduced albedo range: theory and simulation. Shi Z, Fan Y, Zhao H, Xu K. J Biomed Opt; 2012 Jun 01; 17(6):067004. PubMed ID: 22734782 [Abstract] [Full Text] [Related]
11. Optimizing probe design for an implantable perfusion and oxygenation sensor. Akl TJ, Long R, McShane MJ, Ericson MN, Wilson MA, Coté GL. Biomed Opt Express; 2011 Aug 01; 2(8):2096-109. PubMed ID: 21833350 [Abstract] [Full Text] [Related]
12. Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation. Spinelli L, Martelli F, Del Bianco S, Pifferi A, Torricelli A, Cubeddu R, Zaccanti G. Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug 01; 74(2 Pt 1):021919. PubMed ID: 17025484 [Abstract] [Full Text] [Related]
13. Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium. Sawosz P, Liebert A. Biomed Opt Express; 2019 Oct 01; 10(10):5031-5041. PubMed ID: 31646028 [Abstract] [Full Text] [Related]
14. Rapid modeling of diffuse reflectance of light in turbid slabs. Wang LV. J Opt Soc Am A Opt Image Sci Vis; 1998 Apr 01; 15(4):936-44. PubMed ID: 9536515 [Abstract] [Full Text] [Related]
15. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Bevilacqua F, Berger AJ, Cerussi AE, Jakubowski D, Tromberg BJ. Appl Opt; 2000 Dec 01; 39(34):6498-507. PubMed ID: 18354663 [Abstract] [Full Text] [Related]
16. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. Liu Q, Ramanujam N. J Opt Soc Am A Opt Image Sci Vis; 2007 Apr 01; 24(4):1011-25. PubMed ID: 17361287 [Abstract] [Full Text] [Related]
17. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery. Lee MW, Hung CH, Liao JL, Cheng NY, Hou MF, Tseng SH. Biomed Opt Express; 2014 Oct 01; 5(10):3628-39. PubMed ID: 25360378 [Abstract] [Full Text] [Related]
18. Diffuse photon density wave measurements and Monte Carlo simulations. Kuzmin VL, Neidrauer MT, Diaz D, Zubkov LA. J Biomed Opt; 2015 Oct 01; 20(10):105006. PubMed ID: 26465614 [Abstract] [Full Text] [Related]
19. Convolution model of the diffuse reflectance for layered tissues. Rohde SB, Kim AD. Opt Lett; 2014 Jan 01; 39(1):154-7. PubMed ID: 24365846 [Abstract] [Full Text] [Related]
20. Spatial resolution in depth for time-resolved diffuse optical tomography using short source-detector separations. Puszka A, Di Sieno L, Mora AD, Pifferi A, Contini D, Planat-Chrétien A, Koenig A, Boso G, Tosi A, Hervé L, Dinten JM. Biomed Opt Express; 2015 Jan 01; 6(1):1-10. PubMed ID: 25657869 [Abstract] [Full Text] [Related] Page: [Next] [New Search]