These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 31574940
1. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Luo S, Song C, Liu K, Ke L, Ma R. Sensors (Basel); 2019 Sep 30; 19(19):. PubMed ID: 31574940 [Abstract] [Full Text] [Related]
2. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data. Song K, Wang Q, Liu G, Jacinthe PA, Li S, Tao H, Du Y, Wen Z, Wang X, Guo W, Wang Z, Shi K, Du J, Shang Y, Lyu L, Hou J, Zhang B, Cheng S, Lyu Y, Fei L. Sci Total Environ; 2022 Mar 01; 810():151188. PubMed ID: 34710411 [Abstract] [Full Text] [Related]
3. A review on the research progress of lake water volume estimation methods. An C, Zhang F, Chan NW, Johnson VC, Shi J. J Environ Manage; 2022 Jul 15; 314():115057. PubMed ID: 35452887 [Abstract] [Full Text] [Related]
4. Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions. Chen T, Song C, Zhan P, Yao J, Li Y, Zhu J. Sci Total Environ; 2022 Feb 10; 807(Pt 1):150772. PubMed ID: 34619207 [Abstract] [Full Text] [Related]
5. Surface water monitoring from 1984 to 2021 based on Landsat time-series images and Google Earth Engine. Zhao B, Wang L. Heliyon; 2024 Sep 15; 10(17):e36660. PubMed ID: 39263062 [Abstract] [Full Text] [Related]
6. [Surface water change characteristics of Taihu Lake from 1984-2018 based on Google Earth Engine]. Liu YY, Tian T, Zeng P, Zhang XY, Che Y. Ying Yong Sheng Tai Xue Bao; 2020 Sep 15; 31(9):3163-3172. PubMed ID: 33345518 [Abstract] [Full Text] [Related]
7. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Zhou Y, Dong J, Xiao X, Liu R, Zou Z, Zhao G, Ge Q. Sci Total Environ; 2019 Nov 01; 689():366-380. PubMed ID: 31277004 [Abstract] [Full Text] [Related]
8. Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Cheng J, Song C, Liu K, Fan C, Ke L, Chen T, Zhan P, Yao J. Sci Total Environ; 2022 Jan 01; 802():149928. PubMed ID: 34464806 [Abstract] [Full Text] [Related]
9. [Responses of aquatic vegetation coverage to interannual variations of water level in different hydrologically connected sub-lakes of Poyang Lake, China]. Wang H, Chen WB, He L, Li HF. Ying Yong Sheng Tai Xue Bao; 2022 Jan 01; 33(1):191-200. PubMed ID: 35224941 [Abstract] [Full Text] [Related]
10. The feasibility of monitoring wilderness lake chemistry with remote sensing methods. Vertucci FA. Environ Monit Assess; 1989 Apr 01; 12(1):59. PubMed ID: 24249059 [Abstract] [Full Text] [Related]
11. [Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters]. Wang SM, Qin BQ. Huan Jing Ke Xue; 2023 Mar 08; 44(3):1228-1243. PubMed ID: 36922185 [Abstract] [Full Text] [Related]
12. Glacial Lake Area Changes in High Mountain Asia during 1990-2020 Using Satellite Remote Sensing. Zhang M, Chen F, Guo H, Yi L, Zeng J, Li B. Research (Wash D C); 2022 Mar 08; 2022():9821275. PubMed ID: 36349340 [Abstract] [Full Text] [Related]
13. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Nguyen UNT, Pham LTH, Dang TD. Environ Monit Assess; 2019 Mar 21; 191(4):235. PubMed ID: 30900016 [Abstract] [Full Text] [Related]
14. Large lake gauging using fractional imagery. Park E, Lewis QW, Sanwlani N. J Environ Manage; 2019 Feb 01; 231():687-693. PubMed ID: 30391713 [Abstract] [Full Text] [Related]
15. Human or climate? Differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective via remote sensing data. Akbas A. Sci Total Environ; 2024 Feb 20; 912():168982. PubMed ID: 38036137 [Abstract] [Full Text] [Related]
16. Sedimentary biogeochemical record in Lake Gonghai: Implications for recent lake changes in relatively remote areas of China. Wan D, Mao X, Jin Z, Song L, Yang J, Yang H. Sci Total Environ; 2019 Feb 01; 649():929-937. PubMed ID: 30179821 [Abstract] [Full Text] [Related]
17. Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images. He Y, Lu Z, Wang W, Zhang D, Zhang Y, Qin B, Shi K, Yang X. Water Res; 2022 May 15; 215():118241. PubMed ID: 35259557 [Abstract] [Full Text] [Related]
18. Detecting landslide-dammed lakes on Sentinel-2 imagery and monitoring their spatio-temporal evolution following the Kaikōura earthquake in New Zealand. Abad L, Hölbling D, Spiekermann R, Prasicek G, Dabiri Z, Argentin AL. Sci Total Environ; 2022 May 10; 820():153335. PubMed ID: 35077801 [Abstract] [Full Text] [Related]
19. Inferring floodplain bathymetry using inundation frequency. Park E, Emadzadeh A, Alcântara E, Yang X, Ho HL. J Environ Manage; 2020 Nov 01; 273():111138. PubMed ID: 32777643 [Abstract] [Full Text] [Related]
20. Resolution effects on ox-bow lake mapping and inundation consistency analysis in moribund deltaic flood plain of India. Pal S, Ghosh R. Environ Sci Pollut Res Int; 2023 Sep 01; 30(41):94485-94500. PubMed ID: 37535280 [Abstract] [Full Text] [Related] Page: [Next] [New Search]