These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


434 related items for PubMed ID: 31588685

  • 21. 3D Heterostructure Constructed by Few-Layered MXenes with a MoS2 Layer as the Shielding Shell for Excellent Hybrid Capacitive Deionization and Enhanced Structural Stability.
    Cai Y, Wang Y, Zhang L, Fang R, Wang J.
    ACS Appl Mater Interfaces; 2022 Jan 19; 14(2):2833-2847. PubMed ID: 34982527
    [Abstract] [Full Text] [Related]

  • 22. Effect of Synthesis on Performance of MXene/Iron Oxide Anode Material for Lithium-Ion Batteries.
    Ali A, Hantanasirisakul K, Abdala A, Urbankowski P, Zhao MQ, Anasori B, Gogotsi Y, Aïssa B, Mahmoud KA.
    Langmuir; 2018 Sep 25; 34(38):11325-11334. PubMed ID: 30169960
    [Abstract] [Full Text] [Related]

  • 23. Strongly Coupled MoS2 Nanocrystal/Ti3 C2 Nanosheet Hybrids Enable High-Capacity Lithium-Ion Storage.
    Hu Z, Kuai X, Chen J, Sun P, Zhang Q, Wu HH, Zhang L.
    ChemSusChem; 2020 Mar 20; 13(6):1485-1490. PubMed ID: 31609529
    [Abstract] [Full Text] [Related]

  • 24. Constructing Conductive Bridge Arrays between Ti3C2Tx MXene Nanosheets for High-Performance Lithium-Ion Batteries and Highly Efficient Hydrogen Evolution.
    Wang X, Wang S, Qin J, Xie X, Yang R, Cao M.
    Inorg Chem; 2019 Dec 16; 58(24):16524-16536. PubMed ID: 31789515
    [Abstract] [Full Text] [Related]

  • 25. Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries.
    Yuan Z, Wang L, Li D, Cao J, Han W.
    ACS Nano; 2021 Apr 27; 15(4):7439-7450. PubMed ID: 33754716
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Engineering 2D MXene and LDH into 3D Hollow Framework for Boosting Photothermal Energy Storage and Microwave Absorption.
    Gao Y, Lin J, Chen X, Tang Z, Qin G, Wang G.
    Small; 2023 Dec 27; 19(49):e2303113. PubMed ID: 37605334
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Multi-Pleated Alkalized Ti3 C2 Tx MXene-Based Sandwich-Like Structure Composite Nanofibers for High-Performance Sodium/Lithium Storage.
    Shi C, Long Z, Wu C, Dai H, Li Z, Qiao H, Liu K, Fan QH, Wang K.
    Small; 2023 Nov 27; 19(48):e2303802. PubMed ID: 37519121
    [Abstract] [Full Text] [Related]

  • 30. Pillar-Structured Ti3 C2 Tx MXene with Engineered Interlayer Spacing for High-Performance Magnesium Batteries.
    Raisi B, Liu X, Rahmatinejad J, Ye Z.
    Small Methods; 2024 Feb 07; ():e2400004. PubMed ID: 38327158
    [Abstract] [Full Text] [Related]

  • 31. Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium-Ion Batteries.
    Du M, Rui K, Chang Y, Zhang Y, Ma Z, Sun W, Yan Q, Zhu J, Huang W.
    Small; 2018 Jan 07; 14(2):. PubMed ID: 29165932
    [Abstract] [Full Text] [Related]

  • 32. Universal Strategy for Preparing Highly Stable PBA/Ti3C2Tx MXene toward Lithium-Ion Batteries via Chemical Transformation.
    Gao X, Zheng Y, Chang J, Xu H, Hui Z, Dai H, Wang H, Xia Z, Zhou J, Sun G.
    ACS Appl Mater Interfaces; 2022 Apr 06; 14(13):15298-15306. PubMed ID: 35333046
    [Abstract] [Full Text] [Related]

  • 33. In Situ Growth of Three-Dimensional MXene/Metal-Organic Framework Composites for High-Performance Supercapacitors.
    Liu C, Bai Y, Li W, Yang F, Zhang G, Pang H.
    Angew Chem Int Ed Engl; 2022 Mar 07; 61(11):e202116282. PubMed ID: 35005827
    [Abstract] [Full Text] [Related]

  • 34. Ti3 C2 Tx MXene Conductive Layers Supported Bio-Derived Fex -1 Sex /MXene/Carbonaceous Nanoribbons for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries.
    Cao J, Wang L, Li D, Yuan Z, Xu H, Li J, Chen R, Shulga V, Shen G, Han W.
    Adv Mater; 2021 Aug 07; 33(34):e2101535. PubMed ID: 34288161
    [Abstract] [Full Text] [Related]

  • 35. Toward Understanding the Enhanced Pseudocapacitive Storage in 3D SnS/MXene Architectures Enabled by Engineered Surface Reactions.
    Qin J, Hao L, Wang X, Jiang Y, Xie X, Yang R, Cao M.
    Chemistry; 2020 Sep 01; 26(49):11231-11240. PubMed ID: 32330328
    [Abstract] [Full Text] [Related]

  • 36. Crosslinking Nanoarchitectonics of Nitrogen-doped Carbon/MoS2 Nanosheets/Ti3 C2 Tx MXene Hybrids for Highly Reversible Sodium Storage.
    Li J, Tang S, Li Z, Wang C, Li J, Li X, Ding Z, Pan L.
    ChemSusChem; 2021 Dec 06; 14(23):5293-5303. PubMed ID: 34582117
    [Abstract] [Full Text] [Related]

  • 37. 3D Graphene Networks Encapsulated with Ultrathin SnS Nanosheets@Hollow Mesoporous Carbon Spheres Nanocomposite with Pseudocapacitance-Enhanced Lithium and Sodium Storage Kinetics.
    Zhang S, Wang G, Zhang Z, Wang B, Bai J, Wang H.
    Small; 2019 Apr 06; 15(14):e1900565. PubMed ID: 30848060
    [Abstract] [Full Text] [Related]

  • 38. A heterostructure of a 2D bimetallic metal-organic framework assembled on an MXene for high-performance supercapacitors.
    Xu D, Zhang Z, Tao K, Han L.
    Dalton Trans; 2023 Feb 21; 52(8):2455-2462. PubMed ID: 36723362
    [Abstract] [Full Text] [Related]

  • 39. In-situ synthesis of niobium-doped TiO2 nanosheet arrays on double transition metal MXene (TiNbCTx) as stable anode material for lithium-ion batteries.
    Ma Q, Zhang Z, Kou P, Wang D, Wang Z, Sun H, Zheng R, Liu Y.
    J Colloid Interface Sci; 2022 Jul 21; 617():147-155. PubMed ID: 35272168
    [Abstract] [Full Text] [Related]

  • 40. Sulfur-Bridged Bonds Boost the Conversion Reaction of the Flexible Self-Supporting MnS@MXene@CNF Anode for High-Rate and Long-Life Lithium-Ion Batteries.
    Zeng Q, Tian S, Liu G, Yang H, Sun X, Wang D, Huang J, Yan D, Peng S.
    ACS Appl Mater Interfaces; 2022 Feb 09; 14(5):6958-6966. PubMed ID: 35080865
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.