These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


79 related items for PubMed ID: 31589432

  • 1. GWAS and Coexpression Network Reveal Ionomic Variation in Cultivated Peanut.
    Zhang H, Wang ML, Schaefer R, Dang P, Jiang T, Chen C.
    J Agric Food Chem; 2019 Oct 30; 67(43):12026-12036. PubMed ID: 31589432
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. GWAS Discovery Of Candidate Genes for Yield-Related Traits in Peanut and Support from Earlier QTL Mapping Studies.
    Wang J, Yan C, Li Y, Li C, Zhao X, Yuan C, Sun Q, Shan S.
    Genes (Basel); 2019 Oct 12; 10(10):. PubMed ID: 31614874
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.).
    Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B.
    PLoS One; 2015 Oct 12; 10(4):e0119454. PubMed ID: 25849082
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.).
    Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H.
    Theor Appl Genet; 2015 Jun 12; 128(6):1103-15. PubMed ID: 25805315
    [Abstract] [Full Text] [Related]

  • 9. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.).
    Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK, Varshney RK, Guo B.
    BMC Genet; 2014 Dec 10; 15():133. PubMed ID: 25491595
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.).
    Lu Q, Liu H, Hong Y, Li H, Liu H, Li X, Wen S, Zhou G, Li S, Chen X, Liang X.
    BMC Genomics; 2018 Dec 07; 19(1):887. PubMed ID: 30526476
    [Abstract] [Full Text] [Related]

  • 12. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.).
    Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, Ren X, Zhou X, Chen Y, Jiang H.
    BMC Genet; 2016 Jan 25; 17():25. PubMed ID: 26810040
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Evaluation of linkage disequilibrium, population structure, and genetic diversity in the U.S. peanut mini core collection.
    Otyama PI, Wilkey A, Kulkarni R, Assefa T, Chu Y, Clevenger J, O'Connor DJ, Wright GC, Dezern SW, MacDonald GE, Anglin NL, Cannon EKS, Ozias-Akins P, Cannon SB.
    BMC Genomics; 2019 Jun 11; 20(1):481. PubMed ID: 31185892
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut.
    Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X, Huang G, Wang X, Deshmukh R, Holbrook CC, Bertioli DJ, Ozias-Akins P, Jackson SA, Varshney RK, Guo B.
    Plant Biotechnol J; 2018 Nov 11; 16(11):1954-1967. PubMed ID: 29637729
    [Abstract] [Full Text] [Related]

  • 17. Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts (Arachis hypogaea L.) through Genome-Wide Association Study.
    Yan L, Song W, Wang Z, Yu D, Sudini H, Kang Y, Lei Y, Huai D, Chen Y, Wang X, Wang Q, Liao B.
    Genes (Basel); 2023 Jul 14; 14(7):. PubMed ID: 37510351
    [Abstract] [Full Text] [Related]

  • 18. Genetic diversity and association mapping of mineral element concentrations in spinach leaves.
    Qin J, Shi A, Mou B, Grusak MA, Weng Y, Ravelombola W, Bhattarai G, Dong L, Yang W.
    BMC Genomics; 2017 Dec 04; 18(1):941. PubMed ID: 29202697
    [Abstract] [Full Text] [Related]

  • 19. Mapping Genetic Loci for Quantitative Traits of Golden Shell Color, Mineral Element Contents, and Growth-Related Traits in Pacific Oyster (Crassostrea gigas).
    Song J, Li Q, Yu Y, Wan S, Han L, Du S.
    Mar Biotechnol (NY); 2018 Oct 04; 20(5):666-675. PubMed ID: 29931607
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.