These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
79 related items for PubMed ID: 31589432
21. Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut (Arachis hypogaea L.). Luo D, Shi L, Sun Z, Qi F, Liu H, Xue L, Li X, Liu H, Qu P, Zhao H, Dai X, Dong W, Zheng Z, Huang B, Fu L, Zhang X. Genes (Basel); 2024 Jan 26; 15(2):. PubMed ID: 38397150 [Abstract] [Full Text] [Related]
22. Genetic dissection of seed-iron and zinc concentrations in chickpea. Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK. Sci Rep; 2016 Apr 11; 6():24050. PubMed ID: 27063651 [Abstract] [Full Text] [Related]
23. GWAS with principal component analysis identify QTLs associated with main peanut flavor-related traits. Zhang H, Dean L, Wang ML, Dang P, Lamb M, Chen C. Front Plant Sci; 2023 Apr 11; 14():1204415. PubMed ID: 37780495 [Abstract] [Full Text] [Related]
24. Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. Ackert-Bicknell CL, Karasik D, Li Q, Smith RV, Hsu YH, Churchill GA, Paigen BJ, Tsaih SW. J Bone Miner Res; 2010 Aug 11; 25(8):1808-20. PubMed ID: 20200990 [Abstract] [Full Text] [Related]
25. Storage protein profiles in Spanish and runner market type peanuts and potential markers. Liang XQ, Luo M, Holbrook CC, Guo BZ. BMC Plant Biol; 2006 Oct 12; 6():24. PubMed ID: 17038167 [Abstract] [Full Text] [Related]
26. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Tyagi AK, Parida SK. Plant Mol Biol; 2015 Nov 12; 89(4-5):403-20. PubMed ID: 26394865 [Abstract] [Full Text] [Related]
27. Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Wang X, Zou B, Shao Q, Cui Y, Lu S, Zhang Y, Huang Q, Huang J, Hua J. J Exp Bot; 2018 Jan 23; 69(3):413-421. PubMed ID: 29237030 [Abstract] [Full Text] [Related]
28. Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications. Jones LC, Beard JL, Jones BC. Hippocampus; 2008 Jan 23; 18(4):398-410. PubMed ID: 18189309 [Abstract] [Full Text] [Related]
29. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.). Wang K, Song N, Zhao Q, van der Zee SE. Environ Sci Pollut Res Int; 2016 Jan 23; 23(2):1441-8. PubMed ID: 26370815 [Abstract] [Full Text] [Related]
30. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. Zhao C, Zhao S, Hou L, Xia H, Wang J, Li C, Li A, Li T, Zhang X, Wang X. BMC Plant Biol; 2015 Aug 04; 15():188. PubMed ID: 26239120 [Abstract] [Full Text] [Related]
31. Changes of Seed Weight, Fatty Acid Composition, and Oil and Protein Contents from Different Peanut FAD2 Genotypes at Different Seed Developmental and Maturation Stages. Wang ML, Chen CY, Tonnis B, Pinnow D, Davis J, An YC, Dang P. J Agric Food Chem; 2018 Apr 11; 66(14):3658-3665. PubMed ID: 29558122 [Abstract] [Full Text] [Related]
32. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. Zhao X, Luo L, Cao Y, Liu Y, Li Y, Wu W, Lan Y, Jiang Y, Gao S, Zhang Z, Shen Y, Pan G, Lin H. BMC Genomics; 2018 Jan 25; 19(1):91. PubMed ID: 29370753 [Abstract] [Full Text] [Related]
33. Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. Wu Z, Zhang T, Li L, Xu J, Qin X, Zhang T, Cui L, Lou Q, Li J, Chen J. BMC Plant Biol; 2016 Aug 23; 16(1):182. PubMed ID: 27553196 [Abstract] [Full Text] [Related]
34. Identification of Quantitative Trait Nucleotides and Development of Diagnostic Markers for Nine Fatty Acids in the Peanut. Wang J, Chen H, Li Y, Shi D, Wang W, Yan C, Yuan M, Sun Q, Chen J, Mou Y, Qu C, Shan S. Plants (Basel); 2023 Dec 20; 13(1):. PubMed ID: 38202325 [Abstract] [Full Text] [Related]
35. Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N. Gene; 2012 Oct 25; 508(2):233-40. PubMed ID: 22964359 [Abstract] [Full Text] [Related]
36. Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Peng Z, Gallo M, Tillman BL, Rowland D, Wang J. Mol Genet Genomics; 2016 Feb 25; 291(1):363-81. PubMed ID: 26362763 [Abstract] [Full Text] [Related]
37. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. Wang Z, Yan L, Wan L, Huai D, Kang Y, Shi L, Jiang H, Lei Y, Liao B. BMC Genomics; 2019 Jan 16; 20(1):51. PubMed ID: 30651065 [Abstract] [Full Text] [Related]
38. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil PV, Nadaf HL, Gowda MVC, Bhat RS. PLoS One; 2017 Jan 16; 12(10):e0186113. PubMed ID: 29040293 [Abstract] [Full Text] [Related]
39. Genetic Dissection of ICP-Detected Nutrient Accumulation in the Whole Seed of Common Bean (Phaseolus vulgaris L.). Blair MW, Wu X, Bhandari D, Astudillo C. Front Plant Sci; 2016 Jan 16; 7():219. PubMed ID: 27014282 [Abstract] [Full Text] [Related]
40. TILLING by sequencing to identify induced mutations in stress resistance genes of peanut (Arachis hypogaea). Guo Y, Abernathy B, Zeng Y, Ozias-Akins P. BMC Genomics; 2015 Mar 07; 16(1):157. PubMed ID: 25881128 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]