These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 31596367

  • 1. DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion.
    Shu X, Dong Z, Cheng L, Shu S.
    J Appl Oral Sci; 2019; 27():e20180649. PubMed ID: 31596367
    [Abstract] [Full Text] [Related]

  • 2. Position-dependent correlation between TBX22 exon 5 methylation and palatal shelf fusion in the development of cleft palate.
    Li KE, Shu X, Gong H, Cheng L, Dong Z, Shu S.
    An Acad Bras Cienc; 2019 Jun 19; 91(2):e20180945. PubMed ID: 31241704
    [Abstract] [Full Text] [Related]

  • 3. Correlation between HDAC4 enhancer DNA methylation and mRNA expression during palatal fusion induced by all-trans retinoic acid.
    Shu X, Cheng H, Shu S, Tang S, Li K, Dong Z.
    J Cell Biochem; 2018 Dec 19; 119(12):9967-9973. PubMed ID: 30155966
    [Abstract] [Full Text] [Related]

  • 4. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM, Lee JH, Jabaiti S, Lee SK, Choi JY.
    J Craniofac Surg; 2009 Sep 19; 20(5):1316-26. PubMed ID: 19816249
    [Abstract] [Full Text] [Related]

  • 5. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion.
    Shu X, Shu S, Cheng H.
    Genet Test Mol Biomarkers; 2019 Mar 19; 23(3):197-203. PubMed ID: 30767676
    [Abstract] [Full Text] [Related]

  • 6. Genome-Wide DNA Methylation Analysis During Palatal Fusion Reveals the Potential Mechanism of Enhancer Methylation Regulating Epithelial Mesenchyme Transformation.
    Shu X, Shu S, Cheng H, Tang S, Yang L, Li H, Zhang M, Zhu Z, Liu D, Li K, Dong Z, Cheng L, Ding J.
    DNA Cell Biol; 2018 Jun 19; 37(6):560-573. PubMed ID: 29608334
    [Abstract] [Full Text] [Related]

  • 7. RNA-seq analysis of palatal transcriptome changes in all-trans retinoic acid-induced cleft palate of mice.
    Peng Y, Wang XH, Su CN, Qiao WW, Gao Q, Sun XF, Meng LY.
    Environ Toxicol Pharmacol; 2020 Nov 19; 80():103438. PubMed ID: 32569741
    [Abstract] [Full Text] [Related]

  • 8. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans.
    Funato N, Yanagisawa H.
    Arch Oral Biol; 2018 Nov 19; 95():149-155. PubMed ID: 30121012
    [Abstract] [Full Text] [Related]

  • 9. Genome-Wide DNA Methylation Profile of Gene cis-Acting Element Methylations in All-trans Retinoic Acid-Induced Mouse Cleft Palate.
    Shu X, Shu S, Zhai Y, Zhu L, Ouyang Z.
    DNA Cell Biol; 2018 Oct 02. PubMed ID: 30277813
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Craniofacial expression of human and murine TBX22 correlates with the cleft palate and ankyloglossia phenotype observed in CPX patients.
    Braybrook C, Lisgo S, Doudney K, Henderson D, Marçano AC, Strachan T, Patton MA, Villard L, Moore GE, Stanier P, Lindsay S.
    Hum Mol Genet; 2002 Oct 15; 11(22):2793-804. PubMed ID: 12374769
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The mechanisms governing mouse embryonic palate mesenchymal cells' proliferation associated with atRA-induced cleft palate in mice: insights from integrated transcriptomic and metabolomic analyses.
    Yu Z, Song S, Wang G, Zhang Y, Zhang Y, Wu Y, Liu H, Zhang Y, Liu X.
    Arch Toxicol; 2023 Aug 15; 97(8):2143-2153. PubMed ID: 37278767
    [Abstract] [Full Text] [Related]

  • 15. Expression of mouse Tbx22 supports its role in palatogenesis and glossogenesis.
    Herr A, Meunier D, Müller I, Rump A, Fundele R, Ropers HH, Nuber UA.
    Dev Dyn; 2003 Apr 15; 226(4):579-86. PubMed ID: 12666195
    [Abstract] [Full Text] [Related]

  • 16. [Study on DNA methylation profiles in non-syndromic cleft lip/palate based on bioinformatics].
    Zhao AD, Huang YJ, Zhang HF, Tang W, Zhang MF.
    Shanghai Kou Qiang Yi Xue; 2019 Feb 15; 28(1):57-62. PubMed ID: 31081001
    [Abstract] [Full Text] [Related]

  • 17. Isolation and developmental expression analysis of Tbx22, the mouse homolog of the human X-linked cleft palate gene.
    Bush JO, Lan Y, Maltby KM, Jiang R.
    Dev Dyn; 2002 Nov 15; 225(3):322-6. PubMed ID: 12412015
    [Abstract] [Full Text] [Related]

  • 18. Developmental profiles of the murine palatal methylome.
    Seelan RS, Appana SN, Mukhopadhyay P, Warner DR, Brock GN, Pisano MM, Greene RM.
    Birth Defects Res A Clin Mol Teratol; 2013 Apr 15; 97(4):171-86. PubMed ID: 23554260
    [Abstract] [Full Text] [Related]

  • 19. Regulation of Tbx22 during facial and palatal development.
    Fuchs A, Inthal A, Herrmann D, Cheng S, Nakatomi M, Peters H, Neubüser A.
    Dev Dyn; 2010 Nov 15; 239(11):2860-74. PubMed ID: 20845426
    [Abstract] [Full Text] [Related]

  • 20. High throughput miRNA sequencing and bioinformatics analysis identify the mesenchymal cell proliferation and apoptosis related miRNAs during fetal mice palate development.
    Lu M, Lu F, Liao C, Guo Y, Mao C, Lai Y, Chen X, Chen W.
    J Gene Med; 2023 Sep 15; 25(9):e3531. PubMed ID: 37317697
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.