These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. Soucy KG, Giridharan GA, Choi Y, Sobieski MA, Monreal G, Cheng A, Schumer E, Slaughter MS, Koenig SC. J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573 [Abstract] [Full Text] [Related]
4. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG, Kaiser L, Smalling RW. J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799 [Abstract] [Full Text] [Related]
6. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery. Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, Fukamachi K. J Thorac Cardiovasc Surg; 2015 Aug; 150(2):343-8. PubMed ID: 26204865 [Abstract] [Full Text] [Related]
7. Control of ventricular unloading using an electrocardiogram-synchronized pulsatile ventricular assist device under high stroke ratios. Magkoutas K, Rebholz M, Sündermann S, Alogna A, Faragli A, Falk V, Meboldt M, Schmid Daners M. Artif Organs; 2020 Oct; 44(10):E394-E405. PubMed ID: 32321193 [Abstract] [Full Text] [Related]
8. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011. Holman WL, Naftel DC, Eckert CE, Kormos RL, Goldstein DJ, Kirklin JK. J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245 [Abstract] [Full Text] [Related]
9. Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device. Travis AR, Giridharan GA, Pantalos GM, Dowling RD, Prabhu SD, Slaughter MS, Sobieski M, Undar A, Farrar DJ, Koenig SC. J Thorac Cardiovasc Surg; 2007 Feb; 133(2):517-24. PubMed ID: 17258591 [Abstract] [Full Text] [Related]
10. Accurate Method of Quantification of Aortic Insufficiency During Left Ventricular Assist Device Support by Thermodilution Analysis: Proof of Concept and Validation by a Mock Circulatory System. Akiyama D, Nishimura T, Sumikura H, Iizuka K, Mizuno T, Tsukiya T, Takewa Y, Ono M, Tatsumi E. Artif Organs; 2018 Oct; 42(10):954-960. PubMed ID: 30062741 [Abstract] [Full Text] [Related]
11. Hemodynamic performance of a compact centrifugal left ventricular assist device with fully magnetic levitation under pulsatile operation: An in vitro study. Wu T, Lin H, Zhu Y, Huang P, Lin F, Chen C, Hsu PL. Proc Inst Mech Eng H; 2020 Nov; 234(11):1235-1242. PubMed ID: 32650694 [Abstract] [Full Text] [Related]
12. Implantable physiologic controller for left ventricular assist devices with telemetry capability. Asgari SS, Bonde P. J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267 [Abstract] [Full Text] [Related]
13. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling. Bozkurt S, van de Vosse FN, Rutten MC. Int J Artif Organs; 2014 Oct; 37(10):773-85. PubMed ID: 24970558 [Abstract] [Full Text] [Related]
14. Flow assessment as a function of pump timing of tubular pulsatile pump for use as a ventricular assist device in a left heart simulator. Sharifi A, Bark D. Artif Organs; 2022 Jul; 46(7):1294-1304. PubMed ID: 35132629 [Abstract] [Full Text] [Related]
15. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. Undar A, Zapanta CM, Reibson JD, Souba M, Lukic B, Weiss WJ, Snyder AJ, Kunselman AR, Pierce WS, Rosenberg G, Myers JL. ASAIO J; 2005 Jul; 51(1):56-9. PubMed ID: 15745135 [Abstract] [Full Text] [Related]
16. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle. Bartoli CR, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD, Slaughter MS, Koenig SC. ASAIO J; 2010 Jul; 56(5):410-6. PubMed ID: 20613490 [Abstract] [Full Text] [Related]
17. Changing pulsatility by delaying the rotational speed phasing of a rotary left ventricular assist device. Date K, Nishimura T, Arakawa M, Takewa Y, Kishimoto S, Umeki A, Ando M, Mizuno T, Tsukiya T, Ono M, Tatsumi E. J Artif Organs; 2017 Mar; 20(1):18-25. PubMed ID: 27436097 [Abstract] [Full Text] [Related]
18. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop. Timms D, Hayne M, Tan A, Pearcy M. Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286 [Abstract] [Full Text] [Related]
19. Selective reduction of afterload in right heart assist therapy: a mock loop study†. Hsu PL, Hatam N, Unterkofler J, Goetzenich A, McIntyre M, Wong KC, Egger C, Schmitz-Rode T, Autschbach R, Steinseifer U. Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):76-81. PubMed ID: 24670773 [Abstract] [Full Text] [Related]
20. Hemodynamic and pressure-volume responses to continuous and pulsatile ventricular assist in an adult mock circulation. Koenig SC, Pantalos GM, Gillars KJ, Ewert DL, Litwak KN, Etoch SW. ASAIO J; 2004 Jul; 50(1):15-24. PubMed ID: 14763487 [Abstract] [Full Text] [Related] Page: [Next] [New Search]