These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 31605996

  • 1. Evolution of As speciation with depth in a soil profile with a geothermal As origin.
    Yang PT, Wu WJ, Hashimoto Y, Huang JH, Huang ST, Hseu ZY, Wang SL.
    Chemosphere; 2020 Feb; 241():124956. PubMed ID: 31605996
    [Abstract] [Full Text] [Related]

  • 2. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ, Yoo JC, Baek K.
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong.
    Cui JL, Zhao YP, Li JS, Beiyuan JZ, Tsang DCW, Poon CS, Chan TS, Wang WX, Li XD.
    Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030
    [Abstract] [Full Text] [Related]

  • 5. XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant.
    Cancès B, Juillot F, Morin G, Laperche V, Alvarez L, Proux O, Hazemann JL, Brown GE, Calas G.
    Environ Sci Technol; 2005 Dec 15; 39(24):9398-405. PubMed ID: 16475314
    [Abstract] [Full Text] [Related]

  • 6. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J, Lei M, Weng L, Li Y, Chen Y, Islam MS, Zhao J, Chen T.
    Chemosphere; 2019 Jul 15; 227():614-623. PubMed ID: 31009868
    [Abstract] [Full Text] [Related]

  • 7. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan.
    Chiang KY, Lin KC, Lin SC, Chang TK, Wang MK.
    J Hazard Mater; 2010 Sep 15; 181(1-3):1066-71. PubMed ID: 20566242
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Effects of long-term paddy rice cultivation on soil arsenic speciation.
    Yang PT, Hashimoto Y, Wu WJ, Huang JH, Chiang PN, Wang SL.
    J Environ Manage; 2020 Jan 15; 254():109768. PubMed ID: 31698298
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain).
    Gomez-Gonzalez MA, Serrano S, Laborda F, Garrido F.
    Sci Total Environ; 2014 Dec 01; 500-501():23-33. PubMed ID: 25217741
    [Abstract] [Full Text] [Related]

  • 13. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T.
    Chemosphere; 2011 May 01; 83(7):925-32. PubMed ID: 21420713
    [Abstract] [Full Text] [Related]

  • 14. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.
    Voegelin A, Pfenninger N, Petrikis J, Majzlan J, Plötze M, Senn AC, Mangold S, Steininger R, Göttlicher J.
    Environ Sci Technol; 2015 May 05; 49(9):5390-8. PubMed ID: 25885948
    [Abstract] [Full Text] [Related]

  • 15. Arsenic speciation in the dispersible colloidal fraction of soils from a mine-impacted creek.
    Serrano S, Gomez-Gonzalez MA, O'Day PA, Laborda F, Bolea E, Garrido F.
    J Hazard Mater; 2015 Apr 09; 286():30-40. PubMed ID: 25576781
    [Abstract] [Full Text] [Related]

  • 16. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P, Liu Y, Menzies NW, Wehr JB, de Jonge MD, Howard DL, Kopittke PM, Huang L.
    Environ Pollut; 2016 Nov 09; 218():835-843. PubMed ID: 27524252
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Arsenic solid-phase speciation and reversible binding in long-term contaminated soils.
    Rahman MS, Clark MW, Yee LH, Comarmond MJ, Payne TE, Kappen P, Mokhber-Shahin L.
    Chemosphere; 2017 Feb 09; 168():1324-1336. PubMed ID: 27916260
    [Abstract] [Full Text] [Related]

  • 19. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction.
    Cruz-Hernández Y, Ruiz-García M, Villalobos M, Romero FM, Meza-Figueroa D, Garrido F, Hernández-Alvarez E, Pi-Puig T.
    Environ Pollut; 2018 Jun 09; 237():154-165. PubMed ID: 29482021
    [Abstract] [Full Text] [Related]

  • 20. Effective stabilization of arsenic in contaminated soils with biogenic manganese oxide (BMO) materials.
    Wang YN, Tsang YF, Wang H, Sun Y, Song Y, Pan X, Luo S.
    Environ Pollut; 2020 Mar 09; 258():113481. PubMed ID: 31859124
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.