These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 31605996
21. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile. Ascar L, Ahumada I, Richter P. Chemosphere; 2008 Jan; 70(7):1211-7. PubMed ID: 17889255 [Abstract] [Full Text] [Related]
22. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils. Ouyang X, Ma J, Weng L, Chen Y, Wei R, Zhao J, Ren Z, Peng H, Liao Z, Li Y. Environ Sci Pollut Res Int; 2020 Oct; 27(29):36377-36390. PubMed ID: 32562227 [Abstract] [Full Text] [Related]
23. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Acosta JA, Arocena JM, Faz A. Chemosphere; 2015 Nov; 138():1014-20. PubMed ID: 25577694 [Abstract] [Full Text] [Related]
24. [Effect of sulfur on the species of Fe and As under redox condition in paddy soil]. Tang BP, Yang SJ, Wang DZ, Rao W, Zhang YN, Wang D, Zhu YJ. Huan Jing Ke Xue; 2014 Oct; 35(10):3851-61. PubMed ID: 25693393 [Abstract] [Full Text] [Related]
25. The role of soil arsenic fractionation in the bioaccessibility, transformation, and fate of arsenic in the presence of human gut microbiota. Yin N, Li Y, Cai X, Du H, Wang P, Han Z, Sun G, Cui Y. J Hazard Mater; 2021 Jan 05; 401():123366. PubMed ID: 32659581 [Abstract] [Full Text] [Related]
26. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents. Kim EJ, Lee JC, Baek K. J Hazard Mater; 2015 Jan 05; 283():454-61. PubMed ID: 25464283 [Abstract] [Full Text] [Related]
27. Partitioning and (im)mobilization of arsenic associated with iron in arsenic-bearing deep subsoil profiles from Hong Kong. Cui JL, Yang J, Zhao Y, Chan T, Xiao T, Tsang DCW, Li X. Environ Pollut; 2022 Sep 01; 308():119527. PubMed ID: 35623570 [Abstract] [Full Text] [Related]
28. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils. Lee JC, Kim EJ, Baek K. Chemosphere; 2017 Feb 01; 168():1439-1446. PubMed ID: 27923505 [Abstract] [Full Text] [Related]
29. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Lee PK, Yu S, Jeong YJ, Seo J, Choi SG, Yoon BY. Chemosphere; 2019 Feb 01; 217():183-194. PubMed ID: 30419376 [Abstract] [Full Text] [Related]
30. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy). Allegretta I, Porfido C, Martin M, Barberis E, Terzano R, Spagnuolo M. Environ Sci Pollut Res Int; 2018 Sep 01; 25(25):25080-25090. PubMed ID: 29936615 [Abstract] [Full Text] [Related]
31. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. Mensah AK, Marschner B, Shaheen SM, Wang J, Wang SL, Rinklebe J. Environ Pollut; 2020 Jun 01; 261():114116. PubMed ID: 32220748 [Abstract] [Full Text] [Related]
32. Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy. Chiang KY, Chen TY, Lee CH, Lin TL, Wang MK, Jang LY, Lee JF. J Environ Sci (China); 2013 Mar 01; 25(3):626-36. PubMed ID: 23923437 [Abstract] [Full Text] [Related]
33. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N, Burton ED, Johnston SG. Environ Pollut; 2019 Nov 01; 254(Pt B):113112. PubMed ID: 31479811 [Abstract] [Full Text] [Related]
34. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy. Fan JX, Wang YJ, Liu C, Wang LH, Yang K, Zhou DM, Li W, Sparks DL. J Hazard Mater; 2014 Aug 30; 279():212-9. PubMed ID: 25064258 [Abstract] [Full Text] [Related]
35. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS. Favorito JE, Luxton TP, Eick MJ, Grossl PR. Environ Pollut; 2017 Oct 30; 229():911-921. PubMed ID: 28781183 [Abstract] [Full Text] [Related]
36. Colloidal mobilization of arsenic from mining-affected soils by surface runoff. Gomez-Gonzalez MA, Voegelin A, Garcia-Guinea J, Bolea E, Laborda F, Garrido F. Chemosphere; 2016 Feb 30; 144():1123-31. PubMed ID: 26454721 [Abstract] [Full Text] [Related]
37. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils. Whitacre S, Basta N, Stevens B, Hanley V, Anderson R, Scheckel K. Chemosphere; 2017 Aug 30; 180():545-552. PubMed ID: 28432891 [Abstract] [Full Text] [Related]
38. Arsenic availability and uptake by edible rape (Brassica campestris L.) grown in contaminated soils spiked with carboxymethyl cellulose-stabilized ferrihydrite nanoparticles. Huo L, Huang D, Zeng X, Su S, Wang Y, Bai L, Wu C. Environ Sci Pollut Res Int; 2018 May 30; 25(15):15080-15088. PubMed ID: 29557040 [Abstract] [Full Text] [Related]
39. Effect of nanomaterials on arsenic volatilization and extraction from flooded soils. Huang Q, Zhou S, Lin L, Huang Y, Li F, Song Z. Environ Pollut; 2018 Aug 30; 239():118-128. PubMed ID: 29653303 [Abstract] [Full Text] [Related]
40. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study. Sarkar D, Datta R, Sharma S. Chemosphere; 2005 Jul 30; 60(2):188-95. PubMed ID: 15914238 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]